We report a current transport mechanism observed during electrochemical anodization of ion irradiated p-type silicon, in which a hole diffusion current is highly funneled along the gradient of modified doping profile towards the maximum ion induced defect density, dominating the total current flowing and hence the anodization behaviour. This study is characterized within the context of electrochemical anodization but relevant to other fields where any residual defect density may result in similar effects, which may adversely affect performance, such as in wafer gettering or satellite-based microelectronics. Increased photoluminescence intensity from localized buried regions of porous silicon is also shown.
Defect enhanced funneling of diffusion current in silicon
VITTONE, Ettore;FORNERIS, JACOPO
2013-01-01
Abstract
We report a current transport mechanism observed during electrochemical anodization of ion irradiated p-type silicon, in which a hole diffusion current is highly funneled along the gradient of modified doping profile towards the maximum ion induced defect density, dominating the total current flowing and hence the anodization behaviour. This study is characterized within the context of electrochemical anodization but relevant to other fields where any residual defect density may result in similar effects, which may adversely affect performance, such as in wafer gettering or satellite-based microelectronics. Increased photoluminescence intensity from localized buried regions of porous silicon is also shown.File | Dimensione | Formato | |
---|---|---|---|
q.pdf
Accesso riservato
Tipo di file:
MATERIALE NON BIBLIOGRAFICO
Dimensione
45.67 kB
Formato
Adobe PDF
|
45.67 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.