Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on Ndimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N - 1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.

Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

CHANU, Claudia Maria;
2012-01-01

Abstract

Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on Ndimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N - 1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples.
2012
8
089
-
http://arxiv.org/pdf/1209.2019v2.pdf
Helmholtz equation, Nonregular separation of variables, Schrödinger equation
P. Broadbridge; C.M. Chanu; W. Miller Jr.
File in questo prodotto:
File Dimensione Formato  
17CMillBroadb_sigma.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 493.69 kB
Formato Adobe PDF
493.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/130393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact