Nuclear factor-kappaB (NF-kappaB) is involved in multiple aspects of oncogenesis and controls cancer cell survival by promoting anti-apoptotic gene expression. The constitutive activation of NF-kappaB in several types of cancers, including hematological malignancies, has been implicated in the resistance to chemo- and radiation therapy. We have previously reported that cytokine- or virus-induced NF-kappaB activation is inhibited by chemical and physical inducers of the heat shock response (HSR). In this study we show that heat stress inhibits constitutive NF-kappaB DNA-binding activity in different types of B-cell malignancies, including multiple myeloma, activated B-cell-like (ABC) type of diffuse large B-cell lymphoma (DLBCL) and Burkitt's lymphoma presenting aberrant NF-kappaB regulation. Heat-induced NF-kappaB inhibition leads to rapid downregulation of the anti-apoptotic protein cellular inhibitor-of-apoptosis protein 2 (cIAP-2), followed by activation of caspase-3 and cleavage of the caspase-3 substrate poly(adenosine diphosphate ribose)polymerase (PARP), causing massive apoptosis under conditions that do not affect viability in cells not presenting NF-kappaB aberrations. NF-kappaB inhibition by the proteasome inhibitor bortezomib and by short-hairpin RNA (shRNA) interference results in increased sensitivity of HS-Sultan B-cell lymphoma to hyperthermic stress. Altogether, the results indicate that aggressive B-cell malignancies presenting constitutive NF-kappaB activity are sensitive to heat-induced apoptosis, and suggest that aberrant NF-kappaB regulation may be a marker of heat stress sensitivity in cancer cells.

Heat stress triggers apoptosis by impairing NF-kappaB survival signaling in malignant B cells

PIVA, Roberto;
2010-01-01

Abstract

Nuclear factor-kappaB (NF-kappaB) is involved in multiple aspects of oncogenesis and controls cancer cell survival by promoting anti-apoptotic gene expression. The constitutive activation of NF-kappaB in several types of cancers, including hematological malignancies, has been implicated in the resistance to chemo- and radiation therapy. We have previously reported that cytokine- or virus-induced NF-kappaB activation is inhibited by chemical and physical inducers of the heat shock response (HSR). In this study we show that heat stress inhibits constitutive NF-kappaB DNA-binding activity in different types of B-cell malignancies, including multiple myeloma, activated B-cell-like (ABC) type of diffuse large B-cell lymphoma (DLBCL) and Burkitt's lymphoma presenting aberrant NF-kappaB regulation. Heat-induced NF-kappaB inhibition leads to rapid downregulation of the anti-apoptotic protein cellular inhibitor-of-apoptosis protein 2 (cIAP-2), followed by activation of caspase-3 and cleavage of the caspase-3 substrate poly(adenosine diphosphate ribose)polymerase (PARP), causing massive apoptosis under conditions that do not affect viability in cells not presenting NF-kappaB aberrations. NF-kappaB inhibition by the proteasome inhibitor bortezomib and by short-hairpin RNA (shRNA) interference results in increased sensitivity of HS-Sultan B-cell lymphoma to hyperthermic stress. Altogether, the results indicate that aggressive B-cell malignancies presenting constitutive NF-kappaB activity are sensitive to heat-induced apoptosis, and suggest that aberrant NF-kappaB regulation may be a marker of heat stress sensitivity in cancer cells.
2010
24
187
196
Belardo G; Piva R; Santoro MG
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/131269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact