Perineuronal nets (PNNs) are dense extracellular matrix (ECM) structures that form around many neuronal cell bodies and dendrites late in development. They contain several chondroitin sulphate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R. Their time of appearance correlates with the ending of the critical period for plasticity, and they have been implicated in this process. The distribution of PNNs in the spinal cord was examined usingWisteria floribundaagglutinin lectin and staining for chondroitin sulphate stubs after chondroitinase digestion. Double labelling with the neuronal marker, NeuN, showed that PNNs were present surrounding 30% of motoneurons in the ventral horn, 50% of large interneurons in the intermediate grey and 20% of neurons in the dorsal horn. These PNNs formed in the second week of postnatal development. Immunohistochemical staining demonstrated that the PNNs contain a mixture of CSPGs, hyaluronan, link proteins and tenascin-R. Of the CSPGs, aggrecan was present in all PNNs while neurocan, versican and phosphacan⁄ RPTPbwere present in some but not all PNNs. In situ hybridization showed that aggrecan and cartilage link protein (CRTL 1) and brain link protein-2 (BRAL 2) are produced by neurons. PNN-bearing neurons express hyaluronan synthase, and this enzyme and phosphacan⁄ RPTPbmay attach PNNs to the cell surface. During postnatal development the expression of link protein and aggrecan mRNA is up-regulated at the time of PNN formation, and these molecules may therefore trigger their formation.

Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord

CARULLI, Daniela;
2008-01-01

Abstract

Perineuronal nets (PNNs) are dense extracellular matrix (ECM) structures that form around many neuronal cell bodies and dendrites late in development. They contain several chondroitin sulphate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R. Their time of appearance correlates with the ending of the critical period for plasticity, and they have been implicated in this process. The distribution of PNNs in the spinal cord was examined usingWisteria floribundaagglutinin lectin and staining for chondroitin sulphate stubs after chondroitinase digestion. Double labelling with the neuronal marker, NeuN, showed that PNNs were present surrounding 30% of motoneurons in the ventral horn, 50% of large interneurons in the intermediate grey and 20% of neurons in the dorsal horn. These PNNs formed in the second week of postnatal development. Immunohistochemical staining demonstrated that the PNNs contain a mixture of CSPGs, hyaluronan, link proteins and tenascin-R. Of the CSPGs, aggrecan was present in all PNNs while neurocan, versican and phosphacan⁄ RPTPbwere present in some but not all PNNs. In situ hybridization showed that aggrecan and cartilage link protein (CRTL 1) and brain link protein-2 (BRAL 2) are produced by neurons. PNN-bearing neurons express hyaluronan synthase, and this enzyme and phosphacan⁄ RPTPbmay attach PNNs to the cell surface. During postnatal development the expression of link protein and aggrecan mRNA is up-regulated at the time of PNN formation, and these molecules may therefore trigger their formation.
2008
27
1373
1390
GALTREY C.M; KWOK J.C; CARULLI D; RHODES K.E; FAWCETT J.W
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/131676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 153
social impact