Although the central nervous system is unable to undergo spontaneous repair and is hostile to the integration of exogenously delivered cells, various examples of adult structural plasticity have been shown to occur. It is now widely accepted that endogenous proliferative activity leading to the production of new neurons exists, at least within two restricted brain sites: the hippocampal dentate gyrus and the forebrain subventricular zone. A substantial insight into spontaneous neurogenesis within these allocortical regions in rodents has been obtained, but less is known regarding its occurrence in other mammalian brain regions. In this review, differences in the structural and temporal characteristics of protracted neurogenesis in mammals will be considered. Attention will be focused on the rabbit cerebrum and cerebellum, where unexpected features of structural plasticity have been found to occur despite the relative closeness of the Orders Lagomorpha and Rodentia.

Adult neurogenesis and the New Zealand White Rabbit

BONFANTI, Luca;PONTI, Giovanna
2008

Abstract

Although the central nervous system is unable to undergo spontaneous repair and is hostile to the integration of exogenously delivered cells, various examples of adult structural plasticity have been shown to occur. It is now widely accepted that endogenous proliferative activity leading to the production of new neurons exists, at least within two restricted brain sites: the hippocampal dentate gyrus and the forebrain subventricular zone. A substantial insight into spontaneous neurogenesis within these allocortical regions in rodents has been obtained, but less is known regarding its occurrence in other mammalian brain regions. In this review, differences in the structural and temporal characteristics of protracted neurogenesis in mammals will be considered. Attention will be focused on the rabbit cerebrum and cerebellum, where unexpected features of structural plasticity have been found to occur despite the relative closeness of the Orders Lagomorpha and Rodentia.
175
310
331
L. BONFANTI; G. PONTI
File in questo prodotto:
File Dimensione Formato  
Bonfanti-Ponti2008VetJ.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/131841
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 39
social impact