The occupational exposure to cobalt/tungsten carbide (Co/WC) dusts causes asthma and interstitial fibrosis. The International Agency for Research on Cancer (IARC) recently classified the mixture Co/WC as probably carcinogenic to humans (group 2A). The mechanism of action of Co/WC involves particle driven generation of Reactive Oxygen Species (ROS) with consequent oxidative damage. The present study evaluates the reactivity of Co/WC dust toward glutathione (GSH) and cysteine (Cys). Co/WC oxidized thiols through a mechanism involving the generation of sulphur-centred radicals. The results are consistent with the oxidation taking place at surface active sites, a part of which is accessible only to Cys S-H groups, but not to GSH ones. Such a reaction, with consequent irreversible depletion of antioxidant defenses of cells, will potentiate the oxidative stress caused by particle and cell generated ROS.

The oxidation of glutathione by cobalt/ tungsten carbide contributes to hard metal induced oxidative stress

FENOGLIO, Ivana;CORAZZARI, INGRID;FUBINI, Bice
2008-01-01

Abstract

The occupational exposure to cobalt/tungsten carbide (Co/WC) dusts causes asthma and interstitial fibrosis. The International Agency for Research on Cancer (IARC) recently classified the mixture Co/WC as probably carcinogenic to humans (group 2A). The mechanism of action of Co/WC involves particle driven generation of Reactive Oxygen Species (ROS) with consequent oxidative damage. The present study evaluates the reactivity of Co/WC dust toward glutathione (GSH) and cysteine (Cys). Co/WC oxidized thiols through a mechanism involving the generation of sulphur-centred radicals. The results are consistent with the oxidation taking place at surface active sites, a part of which is accessible only to Cys S-H groups, but not to GSH ones. Such a reaction, with consequent irreversible depletion of antioxidant defenses of cells, will potentiate the oxidative stress caused by particle and cell generated ROS.
2008
42
737
745
COBALT TUNGSTEN CARBIDE; PARTICLES; TOXICITY; Reactive Oxygen Species (ROS); superoxide; glutathione (GSH); cysteine
Ivana Fenoglio; Ingrid Corazzari; Carlotta Francia; Silvia Bodoardo; Bice Fubini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/132254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact