The 'open lung' approach has been proposed as a reasonable ventilation strategy to mitigate ventilator-induced lung injury (VILI) and possibly reduce acute respiratory distress syndrome (ARDS)-related mortality. However, several randomized clinical trials have failed to show any significant clinical benefit of a ventilation strategy applying higher positive end-expiratory pressure (PEEP) and low tidal volume.Dispute regarding the optimal levels of PEEP in ARDS patients represents the substrate for a translational research effort from the bedside to the bench, driving animal studies aimed at elucidating which ventilation strategies reduce biotrauma, considered one of the most important driving forces of VILI and ARDS-related multi-organ failure and mortality. Inappropriate values for end-inspiratory or end-expiratory pressure have clear potential to damage a lung predisposed to VILI. In the heterogeneous environment of the ARDS 'baby lung', lung recruitment and the avoidance of tidal overstretch with high-frequency oscillation ventilation or conventional mechanical ventilation, guided by respiratory mechanics, appears to reduce VILI.
Open the lung with high-frequency oscillation ventilation or conventional mechanical ventilation? It may not matter!
FANELLI, VITO;
2010-01-01
Abstract
The 'open lung' approach has been proposed as a reasonable ventilation strategy to mitigate ventilator-induced lung injury (VILI) and possibly reduce acute respiratory distress syndrome (ARDS)-related mortality. However, several randomized clinical trials have failed to show any significant clinical benefit of a ventilation strategy applying higher positive end-expiratory pressure (PEEP) and low tidal volume.Dispute regarding the optimal levels of PEEP in ARDS patients represents the substrate for a translational research effort from the bedside to the bench, driving animal studies aimed at elucidating which ventilation strategies reduce biotrauma, considered one of the most important driving forces of VILI and ARDS-related multi-organ failure and mortality. Inappropriate values for end-inspiratory or end-expiratory pressure have clear potential to damage a lung predisposed to VILI. In the heterogeneous environment of the ARDS 'baby lung', lung recruitment and the avoidance of tidal overstretch with high-frequency oscillation ventilation or conventional mechanical ventilation, guided by respiratory mechanics, appears to reduce VILI.File | Dimensione | Formato | |
---|---|---|---|
Open the lung.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
190.96 kB
Formato
Adobe PDF
|
190.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.