The proteasome system restricts lentiviral transduction of stem cells. We exploited proteasome inhibition as a strategy to enhance transduction of both hematopoietic stem cells (HSC) and T lymphocytes with low dose or large-size lentiviral vectors (LV). HSC showed higher transduction efficiency if transiently exposed to proteasome inhibitor MG132 (41.8% vs 10.7%, p<0.0001). Treatment with MG132 (0.5 μM) retained its beneficial effect with 3 different LV of increasing size up to 10.9 Kb (p<0.01). We extended, for the first time, the application of proteasome inhibition to the transduction of T lymphocytes. A transient exposure to MG132 significantly improved lentiviral T-cell transduction. The mean percentage of transduced T cells progressively increased from 13.5% of untreated cells, to 21% (p=0.3), 30% (p=0.03) and 37% (p=0.01) of T lymphocytes that were pre-treated with MG132 at 0.1, 0.5 and 1 μM, respectively. MG132 did not affect viability or functionality of HSC or T cells, nor significantly increased the number of integrated vector copies. Transient proteasome inhibition appears as a new procedure to safely enhance lentiviral transduction of HSC and T lymphocytes with low viral doses. This approach could be useful in settings where the use of large size vectors may impair optimal viral production.

Transient proteasome inhibition as a strategy to enhance lentiviral transduction of hematopoietic CD34(+) cells and T lymphocytes: implications for the use of low viral doses and large-size vectors.

LEUCI, Valeria;CAPELLERO, Sonia;TODOROVIC, MAJA;PIACIBELLO, Vanda;Fagioli F;AGLIETTA, Massimo;SANGIOLO, Dario
2011-01-01

Abstract

The proteasome system restricts lentiviral transduction of stem cells. We exploited proteasome inhibition as a strategy to enhance transduction of both hematopoietic stem cells (HSC) and T lymphocytes with low dose or large-size lentiviral vectors (LV). HSC showed higher transduction efficiency if transiently exposed to proteasome inhibitor MG132 (41.8% vs 10.7%, p<0.0001). Treatment with MG132 (0.5 μM) retained its beneficial effect with 3 different LV of increasing size up to 10.9 Kb (p<0.01). We extended, for the first time, the application of proteasome inhibition to the transduction of T lymphocytes. A transient exposure to MG132 significantly improved lentiviral T-cell transduction. The mean percentage of transduced T cells progressively increased from 13.5% of untreated cells, to 21% (p=0.3), 30% (p=0.03) and 37% (p=0.01) of T lymphocytes that were pre-treated with MG132 at 0.1, 0.5 and 1 μM, respectively. MG132 did not affect viability or functionality of HSC or T cells, nor significantly increased the number of integrated vector copies. Transient proteasome inhibition appears as a new procedure to safely enhance lentiviral transduction of HSC and T lymphocytes with low viral doses. This approach could be useful in settings where the use of large size vectors may impair optimal viral production.
2011
Dec 10;156
3
218
226
http://www.sciencedirect.com/science/article/pii/S0168165611005141
Lentiviral transduction; Transduction efficiency; Hematopoietic stem cells
Leuci V; Mesiano G; Gammaitoni L; Cammarata C; Capellero S; Todorovic M; Jordaney N; Circosta P; Elia A; Lesnikova M; Georges GE; Piacibello W; Fagiol...espandi
File in questo prodotto:
File Dimensione Formato  
J of Biotech 2011_ Leuci V et al.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 962.62 kB
Formato Adobe PDF
962.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/134267
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact