We study a one-sector stochastic optimal growth model, where the utility function is iso-elastic and the production function is of the Cobb-Douglas form. Production is affected by a multiplicative shock taking one of two values. We provide sufficient conditions on the parameters of the model under which the invariant distribution of the stochastic process of optimal output levels is of the Cantor type.

Cantor Type Invariant Distributions in the Theory of Optimal Growth under Uncertainty

PRIVILEGGI, Fabio
2004-01-01

Abstract

We study a one-sector stochastic optimal growth model, where the utility function is iso-elastic and the production function is of the Cobb-Douglas form. Production is affected by a multiplicative shock taking one of two values. We provide sufficient conditions on the parameters of the model under which the invariant distribution of the stochastic process of optimal output levels is of the Cantor type.
2004
10
5
489
500
http://www.tandfonline.com/doi/abs/10.1080/1023619042000193649#.UxCyaBzNvs0
Stochastic optimal growth; Iterated function system; Invariant measure; No overlap property; Cantor function; Lipschitz policy
T. Mitra; F. Privileggi
File in questo prodotto:
File Dimensione Formato  
MitraPrivileggi04.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 165.39 kB
Formato Adobe PDF
165.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
OAMitraPrivileggi04.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 564.88 kB
Formato Adobe PDF
564.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/135294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact