PURPOSE: We investigate the unknown tumor-killing activity of cytokine-induced killer (CIK) cells against autologous metastatic melanoma and the elusive subset of putative cancer stem cells (mCSC). EXPERIMENTAL DESIGN: We developed a preclinical autologous model using same patient-generated CIK cells and tumor targets to consider the unique biology of each patient/tumor pairing. In primary tumor cell cultures, we visualized and immunophenotypically defined a putative mCSC subset using a novel gene transfer strategy that exploited their exclusive ability to activate the promoter of stemness gene Oct4. RESULTS: The CIK cells from 10 patients with metastatic melanoma were successfully expanded (median, 23-fold; range, 11-117). Primary tumor cell cultures established and characterized from the same patients were used as autologous targets. Patient-derived CIK cells efficiently killed autologous metastatic melanoma [up to 71% specific killing (n = 26)]. CIK cells were active in vivo against autologous melanoma, resulting in delayed tumor growth, increased necrotic areas, and lymphocyte infiltration at tumor sites. The metastatic melanoma cultures presented an average of 11.5% ± 2.5% putative mCSCs, which was assessed by Oct4 promoter activity and stemness marker expression (Oct4, ABCG2, ALDH, MITF). Expression was confirmed on mCSC target molecules recognized by CIK cells (MIC A/B; ULBPs). CIK tumor killing activity against mCSCs was intense (up to 71%, n = 4) and comparable with results reported against differentiated metastatic melanoma cells (P = 0.8). CONCLUSIONS: For the first time, the intense killing activity of CIK cells against autologous metastatic melanoma, including mCSCs, has been shown. These findings move clinical investigation of a new immunotherapy for metastatic melanoma, including mCSCs, closer. Clin Cancer Res; 19(16); 4347-58. ©2013 AACR.
Effective Activity of Cytokine Induced Killer Cells against Autologous Metastatic Melanoma including Cells with Stemness Features.
GIRAUDO, LIDIA;LEUCI, Valeria;PIGNOCHINO, YMERA;AGLIETTA, Massimo;SANGIOLO, Dario
2013-01-01
Abstract
PURPOSE: We investigate the unknown tumor-killing activity of cytokine-induced killer (CIK) cells against autologous metastatic melanoma and the elusive subset of putative cancer stem cells (mCSC). EXPERIMENTAL DESIGN: We developed a preclinical autologous model using same patient-generated CIK cells and tumor targets to consider the unique biology of each patient/tumor pairing. In primary tumor cell cultures, we visualized and immunophenotypically defined a putative mCSC subset using a novel gene transfer strategy that exploited their exclusive ability to activate the promoter of stemness gene Oct4. RESULTS: The CIK cells from 10 patients with metastatic melanoma were successfully expanded (median, 23-fold; range, 11-117). Primary tumor cell cultures established and characterized from the same patients were used as autologous targets. Patient-derived CIK cells efficiently killed autologous metastatic melanoma [up to 71% specific killing (n = 26)]. CIK cells were active in vivo against autologous melanoma, resulting in delayed tumor growth, increased necrotic areas, and lymphocyte infiltration at tumor sites. The metastatic melanoma cultures presented an average of 11.5% ± 2.5% putative mCSCs, which was assessed by Oct4 promoter activity and stemness marker expression (Oct4, ABCG2, ALDH, MITF). Expression was confirmed on mCSC target molecules recognized by CIK cells (MIC A/B; ULBPs). CIK tumor killing activity against mCSCs was intense (up to 71%, n = 4) and comparable with results reported against differentiated metastatic melanoma cells (P = 0.8). CONCLUSIONS: For the first time, the intense killing activity of CIK cells against autologous metastatic melanoma, including mCSCs, has been shown. These findings move clinical investigation of a new immunotherapy for metastatic melanoma, including mCSCs, closer. Clin Cancer Res; 19(16); 4347-58. ©2013 AACR.File | Dimensione | Formato | |
---|---|---|---|
Clin Canc Res 2013_Gammaitoni et al .full.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
727.62 kB
Formato
Adobe PDF
|
727.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.