We investigate the Whyburn and weakly Whyburn property in the class of P-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn P-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (an assumption weaker than CH) implies the existence of a non-weakly Whyburn P-space of size aleph_2. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindelöf weakly Whyburn P-space and a Lindelöf Whyburn P-space is weakly Whyburn, and we give a consistent example of a non-Whyburn product of two Lindelof Whyburn P-spaces.

P-spaces and the Whyburn property

COSTANTINI, Camillo;
2011-01-01

Abstract

We investigate the Whyburn and weakly Whyburn property in the class of P-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn P-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (an assumption weaker than CH) implies the existence of a non-weakly Whyburn P-space of size aleph_2. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindelöf weakly Whyburn P-space and a Lindelöf Whyburn P-space is weakly Whyburn, and we give a consistent example of a non-Whyburn product of two Lindelof Whyburn P-spaces.
2011
37 (3)
995
1015
P-space; Whyburn space; weakly Whyburn space; Lindelöf space; pseudoradial space; radial space; radial character; ω-modification; cardinality; weight; extent; pseudocharacter; almost disjoint family; nowhere MAD family; Continuum Hypothesis; week Kurepa tree
Angelo Bella; Camillo Costantini; Santi Spadaro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/137405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact