Concavity and supermodularity are in general independent properties. A class of functionals de ned on a lattice cone of a Riesz space has the Choquet property when it is the case that its members are concave whenever they are supermodular. We show that for some important Riesz spaces both the class of positively homogeneous functionals and the class of translation invariant functionals have the Choquet property. We extend in this way the results of Choquet (1953) and König (2003).

On Concavity and Supermodularity

MARINACCI, Massimo;MONTRUCCHIO, Luigi
2008-01-01

Abstract

Concavity and supermodularity are in general independent properties. A class of functionals de ned on a lattice cone of a Riesz space has the Choquet property when it is the case that its members are concave whenever they are supermodular. We show that for some important Riesz spaces both the class of positively homogeneous functionals and the class of translation invariant functionals have the Choquet property. We extend in this way the results of Choquet (1953) and König (2003).
2008
344
642
654
Massimo Marinacci; Luigi Montrucchio
File in questo prodotto:
File Dimensione Formato  
325058.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 362.8 kB
Formato Adobe PDF
362.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/138020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact