Background and aims: Quarrying causes severe degradation of soils and vegetation that can be recovered partially when the quarries are abandoned and re-colonised by plants. To understand the recovery of soil functionality and nutrient cycling, we studied the development of soil phosphorus pools during Scots pine (Pinus sylvestris) revegetation in a disused sand quarry in Northwestern Russia. Methods: Sites that had been developing for different times since abandonment were compared to the parent sand and an adjacent undisturbed forest. Phosphorus speciation in genetic horizons of soil profiles was determined by sequential fractionation and solution phosphorus-31 nuclear magnetic resonance spectroscopy. Results: Rapid transformations in soil properties occurred in 40 years, with a marked decline in pH and an accumulation of organic matter. Phosphorus transformations were shaped by geochemical processes, with a rapid release of inorganic phosphorus from primary minerals and accumulation of organic phosphorus to concentrations exceeding those found in the undisturbed site. Adsorbed and/or precipitated phosphorus increased rapidly, despite few reactive mineral colloidal surfaces. Conclusions: Natural succession of Scots pine in post-mining landscapes promotes ecosystem restoration through the rapid re-establishment of the biogeochemical cycles of organic matter and phosphorus. This study provides an important example of biogeochemical phosphorus cycling during the initial stages of pedogenesis.

Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia

CELI, Luisella Roberta;SANTONI, STEFANIA;BONIFACIO, Eleonora
2013-01-01

Abstract

Background and aims: Quarrying causes severe degradation of soils and vegetation that can be recovered partially when the quarries are abandoned and re-colonised by plants. To understand the recovery of soil functionality and nutrient cycling, we studied the development of soil phosphorus pools during Scots pine (Pinus sylvestris) revegetation in a disused sand quarry in Northwestern Russia. Methods: Sites that had been developing for different times since abandonment were compared to the parent sand and an adjacent undisturbed forest. Phosphorus speciation in genetic horizons of soil profiles was determined by sequential fractionation and solution phosphorus-31 nuclear magnetic resonance spectroscopy. Results: Rapid transformations in soil properties occurred in 40 years, with a marked decline in pH and an accumulation of organic matter. Phosphorus transformations were shaped by geochemical processes, with a rapid release of inorganic phosphorus from primary minerals and accumulation of organic phosphorus to concentrations exceeding those found in the undisturbed site. Adsorbed and/or precipitated phosphorus increased rapidly, despite few reactive mineral colloidal surfaces. Conclusions: Natural succession of Scots pine in post-mining landscapes promotes ecosystem restoration through the rapid re-establishment of the biogeochemical cycles of organic matter and phosphorus. This study provides an important example of biogeochemical phosphorus cycling during the initial stages of pedogenesis.
2013
367
121
134
Celi L.; Cerli C.; Turner B.L.; Santoni S.; Bonifacio E.
File in questo prodotto:
File Dimensione Formato  
2013 Celi et al Plant & Soil.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 697.08 kB
Formato Adobe PDF
697.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Celi et al 2014 Plant Soil OA.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/138600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact