The NO-donor histone deacetylase inhibitor 2, formally obtained by joining Entinostat 1, a moderately selective Class I histone deacetylases (HDACs) inhibitor, to a 4-(methylaminomethyl)furoxan-3-carbonitrile scaffold, is described and its preliminary biological profile discussed. This hybrid regulates Classes I and II HDACs. Nitric oxide (NO) released by the compound activates soluble guanylate cyclase (sGC), causing Class II nuclear shuttling and chromatin modifications, with consequences on gene expression. The hybrid affects a number of micro-RNAs not modulated by its individual components; it promotes myogenic differentiation, inducing the formation of larger myotubes with significantly more nuclei per fiber, in a more efficient manner than the 1:1 mixture of its two components. The hybrid is an example of a new class of NO-donor HDACs now being developed, which should be of interest for treating a number of diseases.

Synthesis and biological evaluation of the first example of NO-donor histone deacetylase inhibitor

BORRETTO, EMILY;LAZZARATO, Loretta;FRUTTERO, Roberta;GASCO, Alberto
2013

Abstract

The NO-donor histone deacetylase inhibitor 2, formally obtained by joining Entinostat 1, a moderately selective Class I histone deacetylases (HDACs) inhibitor, to a 4-(methylaminomethyl)furoxan-3-carbonitrile scaffold, is described and its preliminary biological profile discussed. This hybrid regulates Classes I and II HDACs. Nitric oxide (NO) released by the compound activates soluble guanylate cyclase (sGC), causing Class II nuclear shuttling and chromatin modifications, with consequences on gene expression. The hybrid affects a number of micro-RNAs not modulated by its individual components; it promotes myogenic differentiation, inducing the formation of larger myotubes with significantly more nuclei per fiber, in a more efficient manner than the 1:1 mixture of its two components. The hybrid is an example of a new class of NO-donor HDACs now being developed, which should be of interest for treating a number of diseases.
ACS MEDICINAL CHEMISTRY LETTERS
4
994
999
HDAC; histone deacetylase inhibitors; NO-donor; multitarget drugs; epigenetics
Emily Borretto; Loretta Lazzarato; Francesco Spallotta; Chiara Cencioni; Yuri D’Alessandra; Carlo Gaetano; Roberta Fruttero; Alberto Gasco
File in questo prodotto:
File Dimensione Formato  
HDAC_MCL_copertina.pdf

embargo fino al 30/10/2014

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 637.64 kB
Formato Adobe PDF
637.64 kB Adobe PDF Visualizza/Apri
2013_HDAC_MCL.pdf

non disponibili

Tipo di file: PDF EDITORIALE
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/140097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 42
social impact