Vascular Endothelial Growth Factor-A (VEGF-A) is a key molecule in normal and tumor angiogenesis. This study addresses the role of c-ABL as a novel downstream target of VEGF-A in primary Human Umbilical Vein Endothelial Cells (HUVEC). On the basis of immunoprecipitation experiments, in vitro kinase assay and RNA interference, we demonstrate that VEGF-A induces the c-ABL kinase activity through the VEGF Receptor-2 /Phosphatidylinositol-3-Kinase pathway. By treating HUVEC with the specific tyrosine kinase inhibitor STI571 and over-expressing a dominant negative c-ABL mutant, we show that the VEGF-A-activated c-ABL reduces the amplitude of Mitogen-Activated Protein Kinases (ERK1/2, JNKs and p38) activation in a dose-dependent manner by a negative feedback mechanism. By analysis of the adaptor proteins NCK1 and GRB2 mutants we further show that the negative loop on p38 is mediated by c-ABL phosphorylation at tyrosine 105 of the adaptor protein NCK1, while the phosphorylation at tyrosine 209 of GRB2 down-modulates ERK1/2 and JNKs signaling. These findings suggest that c-ABL function is to establish a correct and tightly controlled response of endothelial cells to VEGF-A during the angiogenic process.

c-ABL modulates MAP kinases activation downstream of VEGFR-2 signaling by direct phosphorylation of the adaptor proteins GRB2 and NCK1

ANSELMI F;OLIVIERO, Salvatore;
2012-01-01

Abstract

Vascular Endothelial Growth Factor-A (VEGF-A) is a key molecule in normal and tumor angiogenesis. This study addresses the role of c-ABL as a novel downstream target of VEGF-A in primary Human Umbilical Vein Endothelial Cells (HUVEC). On the basis of immunoprecipitation experiments, in vitro kinase assay and RNA interference, we demonstrate that VEGF-A induces the c-ABL kinase activity through the VEGF Receptor-2 /Phosphatidylinositol-3-Kinase pathway. By treating HUVEC with the specific tyrosine kinase inhibitor STI571 and over-expressing a dominant negative c-ABL mutant, we show that the VEGF-A-activated c-ABL reduces the amplitude of Mitogen-Activated Protein Kinases (ERK1/2, JNKs and p38) activation in a dose-dependent manner by a negative feedback mechanism. By analysis of the adaptor proteins NCK1 and GRB2 mutants we further show that the negative loop on p38 is mediated by c-ABL phosphorylation at tyrosine 105 of the adaptor protein NCK1, while the phosphorylation at tyrosine 209 of GRB2 down-modulates ERK1/2 and JNKs signaling. These findings suggest that c-ABL function is to establish a correct and tightly controlled response of endothelial cells to VEGF-A during the angiogenic process.
2012
15
187
197
ANSELMI F; ORLANDINI M; ROCCHIGIANI M; DE CLEMENTE C; SALAMEH A; LENTUCCI C; OLIVIERO S; F. GALVAGNI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/141205
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact