In addition to direct photolysis, degradation of organic compounds by solar light can also occur by indirect photolysis or photo-sensitised processes. These reactions are important because they are involved in, among others, direct and indirect climate changes, adverse health effects from inhaled particles, effects on cloud chemistry and ozone production. In this work, the importance of atmospheric photosensitisation is evaluated in bulk aqueous solution and on the surface of aerosol deliquescent particles. Irradiation experiments in aqueous solution indicate that 4-carboxybenzophenone (CBP) is able to photosensitise the degradation of 4-phenoxyphenol (4 PP). The process takes place via the CBP triplet state (3CBP*), which has an oxidising nature. 4 PP is fluorescent, unlike the photosensitiser CBP, with two emission bands at w320 and w380 nm. However, addition of CBP to a 4 PP solution considerably decreases the intensity of 4 PP fluorescence bands and causes a very intense new band to appear at w420 nm. This behaviour suggests a possible interaction between CBP and 4 PP in solution, which could favour further light-induced processes. Moreover, the new band overlaps with the fluorescence spectrum of atmospheric HULIS (HUmic-LIke Substances), suggesting that supramolecular photosensitiseresubstrate interactions may have a role in HULIS fluorescence properties. The interaction between CBP and 4 PP coated on silica particles (gasesolid system) was also investigated under simulated sunlight, and in the presence of variable relative humidity. The water molecules inhibit the degradation of 4 PP, induced by 3CBP* on the surface of aerosol particles, indicating that the process could be even faster on particles than in solution. We demonstrate that phenol substances adsorbed on aerosol surfaces and in bulk solution are substantially altered upon photosensitised processes.

Phototransformation of 4-phenoxyphenol sensitised by 4-carboxybenzophenone: Evidence of new photochemical pathways in the bulk aqueous phase and on the surface of aerosol deliquescent particles

DE LAURENTIIS, ELISA;VIONE, Davide Vittorio;
2013-01-01

Abstract

In addition to direct photolysis, degradation of organic compounds by solar light can also occur by indirect photolysis or photo-sensitised processes. These reactions are important because they are involved in, among others, direct and indirect climate changes, adverse health effects from inhaled particles, effects on cloud chemistry and ozone production. In this work, the importance of atmospheric photosensitisation is evaluated in bulk aqueous solution and on the surface of aerosol deliquescent particles. Irradiation experiments in aqueous solution indicate that 4-carboxybenzophenone (CBP) is able to photosensitise the degradation of 4-phenoxyphenol (4 PP). The process takes place via the CBP triplet state (3CBP*), which has an oxidising nature. 4 PP is fluorescent, unlike the photosensitiser CBP, with two emission bands at w320 and w380 nm. However, addition of CBP to a 4 PP solution considerably decreases the intensity of 4 PP fluorescence bands and causes a very intense new band to appear at w420 nm. This behaviour suggests a possible interaction between CBP and 4 PP in solution, which could favour further light-induced processes. Moreover, the new band overlaps with the fluorescence spectrum of atmospheric HULIS (HUmic-LIke Substances), suggesting that supramolecular photosensitiseresubstrate interactions may have a role in HULIS fluorescence properties. The interaction between CBP and 4 PP coated on silica particles (gasesolid system) was also investigated under simulated sunlight, and in the presence of variable relative humidity. The water molecules inhibit the degradation of 4 PP, induced by 3CBP* on the surface of aerosol particles, indicating that the process could be even faster on particles than in solution. We demonstrate that phenol substances adsorbed on aerosol surfaces and in bulk solution are substantially altered upon photosensitised processes.
2013
81
569
578
Atmospheric photosensitisers; Triplet-sensitised photochemical reactions; Humic-like substances; Atmospheric aqueous phase; Atmospheric aerosol; Gas solid reactivity
Elisa De Laurentiis; Joanna Socorro; Davide Vione; Etienne Quivet; Marcello Brigante; Gilles Mailhot; Henri Wortham; Sasho Gligorovski
File in questo prodotto:
File Dimensione Formato  
AtmosEnv2013_CBP_4PP.pdf

Open Access dal 02/12/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 571.24 kB
Formato Adobe PDF
571.24 kB Adobe PDF Visualizza/Apri
Atmos_Environ_2013_CBP_4PP.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/141264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact