The determination of the oxidation state of transition metals at high spatial resolution is a crucial issue for many fields of science, including solid state physics, earth sciences, biology, bio-chemistry and catalysis. Among the other available analytical methods, micro-XANES allows to probe in situ the oxidation state with high lateral resolution, enabling an unprecedented level of description in heterogeneous samples. In geological samples the determination of the Fe3+/ΣFe ratio is of particular interest since it can be used as an indicator of the oxygen fugacity (fO2) at which a mineral formed. With this respect, we performed a micro-XANES aiming to investigate the Fe-redox state variation across single-crystals of both garnet and omphacite exploiting the X-ray microprobe available at the ESRF ID22 beamline to reach a spot size of 1.7 μm × 5.3 μm. For garnet, the absolute Fe3+ content was determined in a space-resolved way. In the case of omphacite, the analysis of the XANES data is not straightforward owing to the presence of a significant dichroism effect and to the random orientation of the different grains in the mineral assemblage. The investigated samples are highly complex materials which represent a challenge for the micro-XANES technique. These zoned micro-crystals are therefore ideal systems to develop analytical procedures which

Iron oxidation state variations in zoned micro-crystals measured using micro-XANES

MINO, LORENZO;BORFECCHIA, ELISA;GROPPO, CHIARA TERESA;CASTELLI, Daniele Carlo Cesare;LAMBERTI, Carlo
2014-01-01

Abstract

The determination of the oxidation state of transition metals at high spatial resolution is a crucial issue for many fields of science, including solid state physics, earth sciences, biology, bio-chemistry and catalysis. Among the other available analytical methods, micro-XANES allows to probe in situ the oxidation state with high lateral resolution, enabling an unprecedented level of description in heterogeneous samples. In geological samples the determination of the Fe3+/ΣFe ratio is of particular interest since it can be used as an indicator of the oxygen fugacity (fO2) at which a mineral formed. With this respect, we performed a micro-XANES aiming to investigate the Fe-redox state variation across single-crystals of both garnet and omphacite exploiting the X-ray microprobe available at the ESRF ID22 beamline to reach a spot size of 1.7 μm × 5.3 μm. For garnet, the absolute Fe3+ content was determined in a space-resolved way. In the case of omphacite, the analysis of the XANES data is not straightforward owing to the presence of a significant dichroism effect and to the random orientation of the different grains in the mineral assemblage. The investigated samples are highly complex materials which represent a challenge for the micro-XANES technique. These zoned micro-crystals are therefore ideal systems to develop analytical procedures which
2014
229
72
79
http://www.sciencedirect.com/science/article/pii/S0920586113005762
Fe oxidation state; micro-XANES; X-ray micro-beam; zoned micro-crystals; polarization-dependent XANES
L. Mino; E. Borfecchia; C. Groppo; D. Castelli; G. Martinez-Criado; R. Spiess; C. Lamberti
File in questo prodotto:
File Dimensione Formato  
Mino_2014_CatTod_iron oxidation state.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mino_2014_CatTod_iron oxidation state_aperTO.pdf

Open Access dal 17/06/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/141465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact