Local delivery of growth factors (GFs) can accelerate regeneration of injured tissue, but for many medical applications, injectable GF delivery systems are required for clinical success. Viscoelastic, injectable aggregates of micrometer-sized hydrogel particles made of multiarmed polyethylene glycol (starPEG) and heparin were prepared and tested for site-specific paracrine stimulation of tissue regeneration. Heparin was used as it binds, protects and releases numerous GFs. Hydrogel based delivery of basic fibroblast growth factor (bFGF) and murine epidermal growth factor (EGF) was monitored utilizing enzyme-linked immunosorbent assay (ELISA). bFGF was released slowly because of its high affinity to the heparin while the significantly higher release of the non-specific binding EGF was controlled by diffusion only. To investigate GF delivery in vivo, a hydrogel loaded with murine EGF or bFGF was injected subcapsularly into the left kidney of mice with experimental acute kidney injury caused by glycerol induced rhabdomyolysis. Visual examination confirmed sustained stability of the injected gel aggregates during the timescale of the experiment. The number of proliferating kidney tubular epithelial cells was quantified both in the injected kidney and the non-injected contralateral kidney. bFGF delivery from hydrogels induced a significant increase in cell proliferation in the injected kidney, although small effects were also seen in the non-injected kidney due to a systemic effect. EGF delivery strongly increased cell proliferation for both kidneys, but also showed a local effect on the injected kidney. The hydrogel without loaded GFs was used as a control and showed no increase in cell proliferation. Our results suggest that this novel starPEG-heparin hydrogel system can be an effective approach to deliver GFs locally. (C) 2013 Elsevier B. V. All rights reserved.

Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury

BUSSOLATI, Benedetta;CAMUSSI, Giovanni;
2013-01-01

Abstract

Local delivery of growth factors (GFs) can accelerate regeneration of injured tissue, but for many medical applications, injectable GF delivery systems are required for clinical success. Viscoelastic, injectable aggregates of micrometer-sized hydrogel particles made of multiarmed polyethylene glycol (starPEG) and heparin were prepared and tested for site-specific paracrine stimulation of tissue regeneration. Heparin was used as it binds, protects and releases numerous GFs. Hydrogel based delivery of basic fibroblast growth factor (bFGF) and murine epidermal growth factor (EGF) was monitored utilizing enzyme-linked immunosorbent assay (ELISA). bFGF was released slowly because of its high affinity to the heparin while the significantly higher release of the non-specific binding EGF was controlled by diffusion only. To investigate GF delivery in vivo, a hydrogel loaded with murine EGF or bFGF was injected subcapsularly into the left kidney of mice with experimental acute kidney injury caused by glycerol induced rhabdomyolysis. Visual examination confirmed sustained stability of the injected gel aggregates during the timescale of the experiment. The number of proliferating kidney tubular epithelial cells was quantified both in the injected kidney and the non-injected contralateral kidney. bFGF delivery from hydrogels induced a significant increase in cell proliferation in the injected kidney, although small effects were also seen in the non-injected kidney due to a systemic effect. EGF delivery strongly increased cell proliferation for both kidneys, but also showed a local effect on the injected kidney. The hydrogel without loaded GFs was used as a control and showed no increase in cell proliferation. Our results suggest that this novel starPEG-heparin hydrogel system can be an effective approach to deliver GFs locally. (C) 2013 Elsevier B. V. All rights reserved.
2013
167
248
255
Regenerative medicine; Acute kidney injury; Renal therapy; In situ regeneration; Heparin hydrogel; Growth factor delivery
Mikhail V. Tsurkan;Peter V. Hauser;Andrea Zieris;Raquel Carvalhosa;Benedetta Bussolati;Uwe Freudenberg;Giovanni Camussi;Carsten Werner...espandi
File in questo prodotto:
File Dimensione Formato  
1281825_pdf.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 986.88 kB
Formato Adobe PDF
986.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Bussolati.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 856.56 kB
Formato Adobe PDF
856.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/142035
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 45
social impact