Since its discovery, several studies have implicated the POZ-ZF protein Kaiso in both developmental and tumorigenic processes. However, most of the information regarding Kaiso’s function to date has been gleaned from studies in Xenopus laevis embryos and mammalian cultured cells. To examine Kaiso’s role in a relevant, mammalian organ-specific context, we generated and characterized a Kaiso transgenic mouse expressing a murine Kaiso transgene under the control of the intestine-specific villin promoter. Kaiso transgenic mice were viable and fertile but pathological examination of the small intestine revealed distinct morphological changes. Kaiso transgenics (KaisoTg/+) exhibited a crypt expansion phenotype that was accompanied by increased differentiation of epithelial progenitor cells into secretory cell lineages; this was evidenced by increased cell populations expressing Goblet, Paneth and enteroendocrine markers. Paradoxically however, enhanced differentiation in KaisoTg/+ was accompanied by reduced proliferation, a phenotype reminiscent of Notch inhibition. Indeed, expression of the Notch signalling target HES-1 was decreased in KaisoTg/+ animals. Finally, our Kaiso transgenics exhibited several hallmarks of inflammation, including increased neutrophil infiltration and activation, villi fusion and crypt hyperplasia. Interestingly, the Kaiso binding partner and emerging anti-inflammatory mediator p120ctn is recruited to the nucleus in KaisoTg/+ mice intestinal cells suggesting that Kaiso may elicit inflammation by antagonizing p120ctn function.

The POZ-ZF Transcription Factor Kaiso (ZBTB33) Induces Inflammation and Progenitor Cell Differentiation in the Murine Intestine

MORONE, SIMONA;
2013-01-01

Abstract

Since its discovery, several studies have implicated the POZ-ZF protein Kaiso in both developmental and tumorigenic processes. However, most of the information regarding Kaiso’s function to date has been gleaned from studies in Xenopus laevis embryos and mammalian cultured cells. To examine Kaiso’s role in a relevant, mammalian organ-specific context, we generated and characterized a Kaiso transgenic mouse expressing a murine Kaiso transgene under the control of the intestine-specific villin promoter. Kaiso transgenic mice were viable and fertile but pathological examination of the small intestine revealed distinct morphological changes. Kaiso transgenics (KaisoTg/+) exhibited a crypt expansion phenotype that was accompanied by increased differentiation of epithelial progenitor cells into secretory cell lineages; this was evidenced by increased cell populations expressing Goblet, Paneth and enteroendocrine markers. Paradoxically however, enhanced differentiation in KaisoTg/+ was accompanied by reduced proliferation, a phenotype reminiscent of Notch inhibition. Indeed, expression of the Notch signalling target HES-1 was decreased in KaisoTg/+ animals. Finally, our Kaiso transgenics exhibited several hallmarks of inflammation, including increased neutrophil infiltration and activation, villi fusion and crypt hyperplasia. Interestingly, the Kaiso binding partner and emerging anti-inflammatory mediator p120ctn is recruited to the nucleus in KaisoTg/+ mice intestinal cells suggesting that Kaiso may elicit inflammation by antagonizing p120ctn function.
2013
8
-
e74160
-
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0074160
kaiso; intestine; inflammation; p120 catenin
Roopali Chaudhary;Christina C. Pierre;Kyster Nanan;Daria Wojtal;Simona Morone;Christopher Pinelli;Geoffrey A. Wood;Sylvie Robine;Juliet M. Daniel
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/142213
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact