The search for antideuterons in cosmic rays has been proposed as a promising channel for dark matter indirect detection, especially for dark matter particles with a low or intermediate mass. With the current operational phase of the AMS-02 experiment and the ongoing development of a future dedicated experiment, the General Antiparticle Spectrometer (GAPS), there are exciting prospects for a dark matter detection in the near future. In this paper we develop a detailed and complete re-analysis of the cosmic-ray antideuteron signal, by discussing the main relevant issues related to antideuteron production and propagation through the interstellar medium and the heliosphere. In particular, we first critically revisit the coalescence mechanism for antideuteron production in dark matter annihilation processes. Then, since antideuteron searches have their best prospects of detection at low kinetic energies where the effect of the solar wind and magnetic field are most relevant, we address the impact of solar modulation modeling on the antideuteron flux at the Earth by developing a full numerical 4D solution of cosmic rays transport in the heliosphere. We finally use these improved predictions to provide updated estimates of the reaching capabilities for AMS-02 and GAPS, compatible with the current constraints imposed by the antiprotons measurements of PAMELA. After the antiproton bound is applied, prospects of detection of up to about 15 events in GAPS LDB+ and AMS-02 missions are found, depending on the dark matter mass, annihilation rate and production channel from one side, and on the coalescence process, galactic and solar transport parameters on the other.

Dark matter searches with cosmic antideuterons: status and perspectives

FORNENGO, Nicolao;VITTINO, ANDREA
2013-01-01

Abstract

The search for antideuterons in cosmic rays has been proposed as a promising channel for dark matter indirect detection, especially for dark matter particles with a low or intermediate mass. With the current operational phase of the AMS-02 experiment and the ongoing development of a future dedicated experiment, the General Antiparticle Spectrometer (GAPS), there are exciting prospects for a dark matter detection in the near future. In this paper we develop a detailed and complete re-analysis of the cosmic-ray antideuteron signal, by discussing the main relevant issues related to antideuteron production and propagation through the interstellar medium and the heliosphere. In particular, we first critically revisit the coalescence mechanism for antideuteron production in dark matter annihilation processes. Then, since antideuteron searches have their best prospects of detection at low kinetic energies where the effect of the solar wind and magnetic field are most relevant, we address the impact of solar modulation modeling on the antideuteron flux at the Earth by developing a full numerical 4D solution of cosmic rays transport in the heliosphere. We finally use these improved predictions to provide updated estimates of the reaching capabilities for AMS-02 and GAPS, compatible with the current constraints imposed by the antiprotons measurements of PAMELA. After the antiproton bound is applied, prospects of detection of up to about 15 events in GAPS LDB+ and AMS-02 missions are found, depending on the dark matter mass, annihilation rate and production channel from one side, and on the coalescence process, galactic and solar transport parameters on the other.
2013
09
031-1
031-58
http://arxiv.org/abs/arXiv:1306.4171
Nicolao Fornengo; L. Maccione; A. Vittino
File in questo prodotto:
File Dimensione Formato  
Fornengo_Journal_of_Cosmology_and_Astroparticle_Physics_2013_2013_031-031.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/142913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 53
social impact