Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P < 0.05). The melusin protective effect was also demonstrated by measuring LDH release, which was 50 % lower in Mel-TG compared to WT. Mel-TG hearts had a higher baseline level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.

Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury.

PENNA, Claudia
Co-first
;
BRANCACCIO, Mara
Co-first
;
TULLIO, FRANCESCA;RUBINETTO, Cristina;PERRELLI, MARIA-GIULIA;ANGOTTI, CARMELINA;PAGLIARO, Pasquale
Co-last
;
TARONE, Guido
Co-last
2014-01-01

Abstract

Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P < 0.05). The melusin protective effect was also demonstrated by measuring LDH release, which was 50 % lower in Mel-TG compared to WT. Mel-TG hearts had a higher baseline level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.
2014
109(4):418.
4
418
425
Penna C; Brancaccio M; Tullio F; Rubinetto C; Perrelli MG; Angotti C; Pagliaro P; Tarone G.
File in questo prodotto:
File Dimensione Formato  
BRC_2014_Penna_Brancaccio.pdf

Open Access dal 26/05/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 867.03 kB
Formato Adobe PDF
867.03 kB Adobe PDF Visualizza/Apri
Penna, Brancaccio et al., 2014.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/146596
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact