The paper explores the fit properties of a class of multivariate Lévy processes, which are characterized as time-changed correlated Brownian motions. The time-change has a common and an idiosyncratic component, to re ect the properties of trade, which it represents. The resulting process may provide Variance-Gamma, Normal-Inverse- Gaussian or Generalized-Hyperbolic margins. A non-pairwise calibration to a portfolio of ten US daily stock returns over the period 2009-2013 shows that fit of the Hyperbolic specification is very good, in terms of marginal distributions and overall correlation matrix. It succeeds in explaining the return distribution of both long-only and long- short random portfolios better than competing models do. Their tail behavior is very well captured also by the Variance-Gamma specification.
Dependence Calibration and Portfolio Fit with FactorBased Time Changes
LUCIANO, Elisa;MARENA, Marina;
2013-01-01
Abstract
The paper explores the fit properties of a class of multivariate Lévy processes, which are characterized as time-changed correlated Brownian motions. The time-change has a common and an idiosyncratic component, to re ect the properties of trade, which it represents. The resulting process may provide Variance-Gamma, Normal-Inverse- Gaussian or Generalized-Hyperbolic margins. A non-pairwise calibration to a portfolio of ten US daily stock returns over the period 2009-2013 shows that fit of the Hyperbolic specification is very good, in terms of marginal distributions and overall correlation matrix. It succeeds in explaining the return distribution of both long-only and long- short random portfolios better than competing models do. Their tail behavior is very well captured also by the Variance-Gamma specification.File | Dimensione | Formato | |
---|---|---|---|
no.307_luc_mar_sem.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.