BACKGROUND: To generate a robust predictive model of Early (3 months) Graft Loss after liver transplantation, we used a Bayesian approach to combine evidence from a prospective European cohort (Liver-Match) and the United Network for Organ Sharing registry. METHODS: Liver-Match included 1480 consecutive primary liver transplants performed from 2007 to 2009 and the United Network for Organ Sharing a time-matched series of 9740 transplants. There were 173 and 706 Early Graft Loss, respectively. Multivariate analysis identified as significant predictors of Early Graft Loss: donor age, donation after cardiac death, cold ischaemia time, donor body mass index and height, recipient creatinine, bilirubin, disease aetiology, prior upper abdominal surgery and portal thrombosis. RESULTS: A Bayesian Cox model was fitted to Liver-Match data using the United Network for Organ Sharing findings as prior information, allowing to generate an Early Graft Loss-Donor Risk Index and an Early Graft Loss-Recipient Risk Index. A Donor-Recipient Allocation Model, obtained by adding Early Graft Loss-Donor Risk Index to Early Graft Loss-Recipient Risk Index, was then validated in a distinct United Network for Organ Sharing (year 2010) cohort including 2964 transplants. Donor-Recipient Allocation Model updating using the independent Turin Transplant Centre dataset, allowed to predict Early Graft Loss with good accuracy (c-statistic: 0.76). CONCLUSION: Donor-Recipient Allocation Model allows a reliable donor and recipient-based Early Graft Loss prediction. The Bayesian approach permits to adapt the original Donor-Recipient Allocation Model by incorporating evidence from other cohorts, resulting in significantly improved predictive capability.

A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the Liver Match study

ROMAGNOLI, Renato;TANDOI, FRANCESCO;SALIZZONI, Mauro;
2014-01-01

Abstract

BACKGROUND: To generate a robust predictive model of Early (3 months) Graft Loss after liver transplantation, we used a Bayesian approach to combine evidence from a prospective European cohort (Liver-Match) and the United Network for Organ Sharing registry. METHODS: Liver-Match included 1480 consecutive primary liver transplants performed from 2007 to 2009 and the United Network for Organ Sharing a time-matched series of 9740 transplants. There were 173 and 706 Early Graft Loss, respectively. Multivariate analysis identified as significant predictors of Early Graft Loss: donor age, donation after cardiac death, cold ischaemia time, donor body mass index and height, recipient creatinine, bilirubin, disease aetiology, prior upper abdominal surgery and portal thrombosis. RESULTS: A Bayesian Cox model was fitted to Liver-Match data using the United Network for Organ Sharing findings as prior information, allowing to generate an Early Graft Loss-Donor Risk Index and an Early Graft Loss-Recipient Risk Index. A Donor-Recipient Allocation Model, obtained by adding Early Graft Loss-Donor Risk Index to Early Graft Loss-Recipient Risk Index, was then validated in a distinct United Network for Organ Sharing (year 2010) cohort including 2964 transplants. Donor-Recipient Allocation Model updating using the independent Turin Transplant Centre dataset, allowed to predict Early Graft Loss with good accuracy (c-statistic: 0.76). CONCLUSION: Donor-Recipient Allocation Model allows a reliable donor and recipient-based Early Graft Loss prediction. The Bayesian approach permits to adapt the original Donor-Recipient Allocation Model by incorporating evidence from other cohorts, resulting in significantly improved predictive capability.
2014
46
4
340
347
http://www.dldjournalonline.com/issue/S1590-8658%2814%29X0005-8
liver transplantation; early graft loss
M. Angelico; A. Nardi; R. Romagnoli; T. Marianelli; S. Ginanni Corradini; F. Tandoi; C. Gavrila; M. Salizzoni; A.D. Pinna; U. Cillo;B. Gridelli; L.G....espandi
File in questo prodotto:
File Dimensione Formato  
Angelico_DLD_2014,46,340-347.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 768.86 kB
Formato Adobe PDF
768.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PostPrint_DLD-13-677R1.pdf

Open Access dal 26/04/2015

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/147904
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact