We propose an analytical model to describe the mechanical deformation of single-crystal diamond following the local sub-superficial graphitization obtained by laser beams or MeV ion microbeam implantation. In this case, a local mass–density variation is generated at specific depths within the irradiated micrometric regions, which in turn leads to swelling effects and the development of corresponding mechanical stresses. Our model describes the constrained expansion of the locally damaged material and correctly predicts the surface deformation, as verified by comparing analytical results with experimental profilometry data and Finite Element simulations. The model can be adopted to easily evaluate the stress and strain fields in locally graphitized diamond in the design of microfabrication processes involving the use of focused ion/laser beams, for example to predict the potential formation of cracks, or to evaluate the influence of stress on the properties of opto-mechanical devices.

An analytical model for the mechanical deformation of locally graphitized diamond

BOSIA, Federico;OLIVERO, Paolo;
2014-01-01

Abstract

We propose an analytical model to describe the mechanical deformation of single-crystal diamond following the local sub-superficial graphitization obtained by laser beams or MeV ion microbeam implantation. In this case, a local mass–density variation is generated at specific depths within the irradiated micrometric regions, which in turn leads to swelling effects and the development of corresponding mechanical stresses. Our model describes the constrained expansion of the locally damaged material and correctly predicts the surface deformation, as verified by comparing analytical results with experimental profilometry data and Finite Element simulations. The model can be adopted to easily evaluate the stress and strain fields in locally graphitized diamond in the design of microfabrication processes involving the use of focused ion/laser beams, for example to predict the potential formation of cracks, or to evaluate the influence of stress on the properties of opto-mechanical devices.
2014
48
73
81
http://www.sciencedirect.com/science/article/pii/S0925963514001423
M. Piccardo;F. Bosia; P. Olivero; N. Pugno
File in questo prodotto:
File Dimensione Formato  
Piccardo_DRM_aperTo.pdf

Open Access dal 16/07/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri
DRM_48_73.pdf

Accesso riservato

Descrizione: DRM_48_73
Tipo di file: PDF EDITORIALE
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/148091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact