Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca(2+) concentration ([Ca(2+)]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca(2+) signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca(2+) signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca(2+)]i in Ea.hy926 cells. NaHS-induced Ca(2+) signals in Ea.hy926 cells did not require extracellular Ca(2+) entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca(2+) response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca(2+) signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca(2+)]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca(2+) oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca(2+)]i is essential to trigger the pro-angiogenic Ca(2+) response to VEGF in mature endothelial cells, but not in their immature progenitors.

Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors

AVANZATO, DANIELE;MUNARON, Luca Maria;
2014

Abstract

Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca(2+) concentration ([Ca(2+)]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca(2+) signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca(2+) signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca(2+)]i in Ea.hy926 cells. NaHS-induced Ca(2+) signals in Ea.hy926 cells did not require extracellular Ca(2+) entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca(2+) response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca(2+) signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca(2+)]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca(2+) oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca(2+)]i is essential to trigger the pro-angiogenic Ca(2+) response to VEGF in mature endothelial cells, but not in their immature progenitors.
56
3
225
234
D.M. Potenza; G. Guerra; D. Avanzato; V. Poletto ; S. Pareek; D. Guido ; A. Gallanti ; V. Rosti V; L. Munaron ; F. Tanzi; F. Moccia
File in questo prodotto:
File Dimensione Formato  
CECA-D-14-00052R1-1.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
Potenza et al. - 2014 - Hydrogen sulphide triggers VEGF-induced intracellular Ca(2) signals in human endothelial cells but not in their.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/148310
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 45
social impact