This paper shows how the study of colored compositions of integers reveals some unexpected and original connection with the Invert operator. The Invert operator becomes an important tool to solve the problem of directly counting the number of colored compositions for any coloration. The interesting consequences arising from this relationship also give an immediate and simple criterion to determine whether a sequence of integers counts the number of some colored compositions. Applications to Catalan and Fibonacci numbers naturally emerge, allowing to clearly answer to some open questions. Moreover, the definition of colored compositions with the ‘‘black tie’’ provides straightforward combinatorial proofs to a new identity involving multinomial coefficients and to a new closed formula for the Invert operator. Finally, colored compositions with the ‘‘black tie’’ give rise to a new combinatorial interpretation for the convolution operator, and to a new and easy method to count the number of parts of colored compositions.

Colored compositions, Invert operator and elegant compositions with the “black tie”

CERRUTI, Umberto;MURRU, NADIR
2014

Abstract

This paper shows how the study of colored compositions of integers reveals some unexpected and original connection with the Invert operator. The Invert operator becomes an important tool to solve the problem of directly counting the number of colored compositions for any coloration. The interesting consequences arising from this relationship also give an immediate and simple criterion to determine whether a sequence of integers counts the number of some colored compositions. Applications to Catalan and Fibonacci numbers naturally emerge, allowing to clearly answer to some open questions. Moreover, the definition of colored compositions with the ‘‘black tie’’ provides straightforward combinatorial proofs to a new identity involving multinomial coefficients and to a new closed formula for the Invert operator. Finally, colored compositions with the ‘‘black tie’’ give rise to a new combinatorial interpretation for the convolution operator, and to a new and easy method to count the number of parts of colored compositions.
335
1
7
https://arxiv.org/abs/1409.6454
http://www.sciencedirect.com/science/journal/0012365X/335
Colored composions; Partitions of integers; integer sequences
Marco Abrate;Stefano Barbero;Umberto Cerruti;Nadir Murru
File in questo prodotto:
File Dimensione Formato  
3 - Colored Compositions Invert Operator and Elegant Compositions with the Black Tie.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 371.91 kB
Formato Adobe PDF
371.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/148861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact