Mycorrhizal fungi are key mediators of soil-to-plant movement of mineral nutrients, including essential and non-essential metals. In soil conditions that facilitate mobilization of metal ions, potentially toxic metals can interfere with nitrogen metabolism in both plants and microorganisms. Less is known about possible relationships between nitrogen metabolism and responses to heavy metals. Aim of this study was to investigate this aspect in the ericoid mycorrhizal fungus Oidiodendron maius strain Zn, a metal tolerant ascomycete. Growth of O. maius Zn on zinc and cadmium containing media was significantly affected by the nitrogen source. Screening of a library of O. maius Zn random genetic transformants for sensitivity to heavy metals (zinc and cadmium) and oxidative stress (menadione) yielded a mutant strain that carried a partial deletion of the glutamate synthase (NADH-GOGAT EC 1.4.1.14) gene and its adjacent gene, the APC15 subunit of the anaphase promoting complex. Comparison of WT and OmGOGAT-OmAPC15 mutant strains indicated an impaired N-metabolism and altered stress tolerance, and assays on the OmAPC15-recomplemented strains ascribed the observed phenotypes to the deletion in the OmGOGAT gene. OmGOGAT disruption modified the nitrogen pathway, with a strong reduction of the associated glutamine synthetase (GS, EC 6.3.1.2) activity and an up-regulation of the alternative NADP-glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4) pathway for glutamate biosynthesis. Unless they were supplemented with glutamine, O. maius Zn transformants lacking OmGOGAT were very sensitive to zinc. These results highlight the importance of nitrogen metabolism not only for nitrogen assimilation and transformation, but also for stress tolerance. For mycorrhizal fungi, such as O. maius, this may bear consequences not only to the fungus, but also to the host plant.

OmGOGAT-disruption in the ericoid mycorrhizal fungus Oidiodendron maius induces reorganization of the N pathway and reduces tolerance to heavy-metals

DAGHINO, Stefania;MARTINO, ELENA;PEROTTO, Silvia
2014-01-01

Abstract

Mycorrhizal fungi are key mediators of soil-to-plant movement of mineral nutrients, including essential and non-essential metals. In soil conditions that facilitate mobilization of metal ions, potentially toxic metals can interfere with nitrogen metabolism in both plants and microorganisms. Less is known about possible relationships between nitrogen metabolism and responses to heavy metals. Aim of this study was to investigate this aspect in the ericoid mycorrhizal fungus Oidiodendron maius strain Zn, a metal tolerant ascomycete. Growth of O. maius Zn on zinc and cadmium containing media was significantly affected by the nitrogen source. Screening of a library of O. maius Zn random genetic transformants for sensitivity to heavy metals (zinc and cadmium) and oxidative stress (menadione) yielded a mutant strain that carried a partial deletion of the glutamate synthase (NADH-GOGAT EC 1.4.1.14) gene and its adjacent gene, the APC15 subunit of the anaphase promoting complex. Comparison of WT and OmGOGAT-OmAPC15 mutant strains indicated an impaired N-metabolism and altered stress tolerance, and assays on the OmAPC15-recomplemented strains ascribed the observed phenotypes to the deletion in the OmGOGAT gene. OmGOGAT disruption modified the nitrogen pathway, with a strong reduction of the associated glutamine synthetase (GS, EC 6.3.1.2) activity and an up-regulation of the alternative NADP-glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4) pathway for glutamate biosynthesis. Unless they were supplemented with glutamine, O. maius Zn transformants lacking OmGOGAT were very sensitive to zinc. These results highlight the importance of nitrogen metabolism not only for nitrogen assimilation and transformation, but also for stress tolerance. For mycorrhizal fungi, such as O. maius, this may bear consequences not only to the fungus, but also to the host plant.
2014
71
1
8
Nitrogen metabolism; Heavy metal tolerance; Mycorrhizal fungi; Insertional mutagenesis; Glutamate synthase; Glutamine synthetase
Hassine R Khouja; Stefania Daghino; Simona Abbà; Fatima Boutaraa; Michel Chalot; Damien Blaudez; Elena Martino; Silvia Perotto
File in questo prodotto:
File Dimensione Formato  
Kohuja_GOGAT_2014.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 966.97 kB
Formato Adobe PDF
966.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Khouja et al_2014_postprint.pdf

Accesso aperto

Descrizione: Versione postprint dell'articolo
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact