There are currently no approved targeted therapies for advanced KRAS mutant (KRASMT) colorectal cancer (CRC). Using a unique systems biology approach, we identified JAK1/2-dependent activation of STAT3 as the key mediator of resistance to MEK inhibitors in KRASMT CRC in vitro and in vivo. Further analyses identified acute increases in c-MET activity following treatment with MEK inhibitors in KRASMT CRC models, which was demonstrated to promote JAK1/2-STAT3-mediated resistance. Furthermore, activation of c-MET following MEK inhibition was found to be due to inhibition of the ERK-dependent metalloprotease ADAM17, which normally inhibits c-MET signaling by promoting shedding of its endogenous antagonist, soluble "decoy" MET. Most importantly, pharmacological blockade of this resistance pathway with either c-MET or JAK1/2 inhibitors synergistically increased MEK-inhibitor-induced apoptosis and growth inhibition in vitro and in vivo in KRASMT models, providing clear rationales for the clinical assessment of these combinations in KRASMT CRC patients.

ADAM17-dependent c-MET-STAT3 signaling mediates resistance to MEK inhibitors in KRAS mutant colorectal cancer.

MICHIELI, Paolo;
2014-01-01

Abstract

There are currently no approved targeted therapies for advanced KRAS mutant (KRASMT) colorectal cancer (CRC). Using a unique systems biology approach, we identified JAK1/2-dependent activation of STAT3 as the key mediator of resistance to MEK inhibitors in KRASMT CRC in vitro and in vivo. Further analyses identified acute increases in c-MET activity following treatment with MEK inhibitors in KRASMT CRC models, which was demonstrated to promote JAK1/2-STAT3-mediated resistance. Furthermore, activation of c-MET following MEK inhibition was found to be due to inhibition of the ERK-dependent metalloprotease ADAM17, which normally inhibits c-MET signaling by promoting shedding of its endogenous antagonist, soluble "decoy" MET. Most importantly, pharmacological blockade of this resistance pathway with either c-MET or JAK1/2 inhibitors synergistically increased MEK-inhibitor-induced apoptosis and growth inhibition in vitro and in vivo in KRASMT models, providing clear rationales for the clinical assessment of these combinations in KRASMT CRC patients.
2014
Inglese
Esperti anonimi
7
1940
1955
16
http://www.sciencedirect.com/science/article/pii/S2211124714004264
REGNO UNITO DI GRAN BRETAGNA
GIAPPONE
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
16
Van Schaeybroeck S;Kalimutho M;Dunne PD;Carson R;Allen W;Jithesh PV;Redmond KL;Sasazuki T;Shirasawa S;Blayney J;Michieli P;Fenning C;Lenz HJ;Lawler M;...espandi
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
34_Shaeybroeck et al_Cell Reports 2014.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149415
Citazioni
  • ???jsp.display-item.citation.pmc??? 59
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 88
social impact