To investigate the mechanisms through which p130Cas adaptor protein is linked to tumorigenesis, we generated mouse mammary tumor virus (MMTV)-p130Cas mice overexpressing p130Cas in the mammary gland. MMTVp130Cas transgenic mice are characterized by extensive mammary epithelial hyperplasia during development and pregnancy and by delayed involution at the end of lactation. These phenotypes are associated with activation of Src kinase, extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Akt pathways, leading to an increased rate of proliferation and a decreased apoptosis. A double-transgenic line derived from crossing MMTV-p130Cas with MMTV-HER2-Neu mice expressing the activated form of the HER2-Neu oncogene develops multifocal mammary tumors with a significantly shorter latency than the HER2-Neu parental strain alone. Mammary epithelial cells isolated from tumors of double-transgenic mice display increased tyrosine phosphorylation, c-Src, and Akt activation compared with cells derived from HER2-Neu tumors. In addition, p130Cas down-regulation by RNA interference increases apoptosis in HER2-Neu-expressing cells, indicating that p130Cas regulates cell survival. Consistently with the double-transgenic mice model, p130Cas is overexpressed in a significant subset of human breast cancers and high levels of p130Cas in association with HER2 expression correlate with elevated proliferation. These findings provide evidences for a role of p130Cas as a positive regulator of both proliferation and survival in normal and transformed mammary epithelial cells. Its overexpression contributes to HER2-Neu-induced breast tumorigenesis, thus identifying this protein as a putative target for clinical therapy

p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene–dependent breast tumorigenesis

CABODI, Sara;DI STEFANO, PAOLA;BISARO, Brigitte;CASTELLANO, ISABELLA;SAPINO, Anna;CAVALLO, Federica;FORNI, Guido;SILENGO, Lorenzo;ALTRUDA, Fiorella;TURCO, Emilia;TARONE, Guido;DEFILIPPI, Paola
2006-01-01

Abstract

To investigate the mechanisms through which p130Cas adaptor protein is linked to tumorigenesis, we generated mouse mammary tumor virus (MMTV)-p130Cas mice overexpressing p130Cas in the mammary gland. MMTVp130Cas transgenic mice are characterized by extensive mammary epithelial hyperplasia during development and pregnancy and by delayed involution at the end of lactation. These phenotypes are associated with activation of Src kinase, extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Akt pathways, leading to an increased rate of proliferation and a decreased apoptosis. A double-transgenic line derived from crossing MMTV-p130Cas with MMTV-HER2-Neu mice expressing the activated form of the HER2-Neu oncogene develops multifocal mammary tumors with a significantly shorter latency than the HER2-Neu parental strain alone. Mammary epithelial cells isolated from tumors of double-transgenic mice display increased tyrosine phosphorylation, c-Src, and Akt activation compared with cells derived from HER2-Neu tumors. In addition, p130Cas down-regulation by RNA interference increases apoptosis in HER2-Neu-expressing cells, indicating that p130Cas regulates cell survival. Consistently with the double-transgenic mice model, p130Cas is overexpressed in a significant subset of human breast cancers and high levels of p130Cas in association with HER2 expression correlate with elevated proliferation. These findings provide evidences for a role of p130Cas as a positive regulator of both proliferation and survival in normal and transformed mammary epithelial cells. Its overexpression contributes to HER2-Neu-induced breast tumorigenesis, thus identifying this protein as a putative target for clinical therapy
2006
66(9)
4672
4680
http://cancerres.aacrjournals.org/cgi/reprint/66/9/4672
P130Cas; ErbB2; transgenic mice
Cabodi S; Tinnirello A; Di Stefano P; Bisarò B; Ambrosino E; Castellano I; Sapino A; Arisio R; Cavallo F; Forni G; Glukhova M; Silengo L; Altruda F; T...espandi
File in questo prodotto:
File Dimensione Formato  
canc res.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 770.24 kB
Formato Adobe PDF
770.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1499
Citazioni
  • ???jsp.display-item.citation.pmc??? 72
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 107
social impact