We state a uniform convergence theorem for finite-part integrals which are derivatives of weighted Cauchy principal value integrals. We prove that a sequence of Martensen splines, based on locally uniform meshes, satisfies the sufficient conditions required by the theorem. We construct the quadrature rules based on such splines and illustrate their behaviour by presenting some numerical results and comparisons with composite midpoint, Simpson and Newton-Cotes rules.
Martensen splines and finite-part integrals
DEMICHELIS, Vittoria;
2015-01-01
Abstract
We state a uniform convergence theorem for finite-part integrals which are derivatives of weighted Cauchy principal value integrals. We prove that a sequence of Martensen splines, based on locally uniform meshes, satisfies the sufficient conditions required by the theorem. We construct the quadrature rules based on such splines and illustrate their behaviour by presenting some numerical results and comparisons with composite midpoint, Simpson and Newton-Cotes rules.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
demichelisOA.pdf
Open Access dal 01/01/2017
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
235.8 kB
Formato
Adobe PDF
|
235.8 kB | Adobe PDF | Visualizza/Apri |
|
Demichelis_MartensenSplines.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipo di file:
PDF EDITORIALE
Dimensione
727.73 kB
Formato
Adobe PDF
|
727.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



