We state a uniform convergence theorem for finite-part integrals which are derivatives of weighted Cauchy principal value integrals. We prove that a sequence of Martensen splines, based on locally uniform meshes, satisfies the sufficient conditions required by the theorem. We construct the quadrature rules based on such splines and illustrate their behaviour by presenting some numerical results and comparisons with composite midpoint, Simpson and Newton-Cotes rules.

Martensen splines and finite-part integrals

DEMICHELIS, Vittoria;
2015-01-01

Abstract

We state a uniform convergence theorem for finite-part integrals which are derivatives of weighted Cauchy principal value integrals. We prove that a sequence of Martensen splines, based on locally uniform meshes, satisfies the sufficient conditions required by the theorem. We construct the quadrature rules based on such splines and illustrate their behaviour by presenting some numerical results and comparisons with composite midpoint, Simpson and Newton-Cotes rules.
2015
69
4
693
712
Uniform convergence; Spline quadrature
V. Demichelis; M. Sciarra
File in questo prodotto:
File Dimensione Formato  
demichelisOA.pdf

Open Access dal 01/01/2017

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 235.8 kB
Formato Adobe PDF
235.8 kB Adobe PDF Visualizza/Apri
Demichelis_MartensenSplines.pdf

Accesso riservato

Descrizione: Articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 727.73 kB
Formato Adobe PDF
727.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact