The nuclear interferon-inducible-16 (IFI16) protein acts as DNA sensor in inflammasome signaling and as viral restriction factor. Following Herpesvirus infection or UV-B treatment, IFI16 delocalizes from the nucleus to the cytoplasm and is eventually released into the extracellular milieu. Recently, our group has demonstrated the occurrence of IFI16 in sera of systemic-autoimmune patients that hampers biological activity of endothelia through high-affinity membrane binding. As a continuation, we studied the activity of endotoxin-free recombinant IFI16 (rIFI16) protein on primary endothelial cells. rIFI16 caused dose/time-dependent upregulation of IL-6, IL-8, CCL2, CCL5, CCL20, ICAM1, VCAM1, and TLR4, while secretion of IL-6 and IL-8 was amplified with lipopolysaccharide synergy. Overall, cytokine secretion was completely inhibited in MyD88-silenced cells and partially by TLR4-neutralizing antibodies. By screening downstream signaling pathways, we found that IFI16 activates p38, p44/42 MAP kinases, and NF-kB. In particular, activation of p38 is an early event required for subsequent p44/42 MAP kinases activity and cytokine induction indicating a key role of this kinase in IFI16 signaling. Altogether, our data conclude that extracellular IFI16 protein alone or by synergy with lipopolysaccharide acts like Damage-associated molecular patterns propagating "Danger Signal" through MyD88-dependent TLR-pathway.
The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation
DE ANDREA, Marco;LO CIGNO, IRENE;Graziani A;LANDOLFO, Santo Giuseppe;
2015-01-01
Abstract
The nuclear interferon-inducible-16 (IFI16) protein acts as DNA sensor in inflammasome signaling and as viral restriction factor. Following Herpesvirus infection or UV-B treatment, IFI16 delocalizes from the nucleus to the cytoplasm and is eventually released into the extracellular milieu. Recently, our group has demonstrated the occurrence of IFI16 in sera of systemic-autoimmune patients that hampers biological activity of endothelia through high-affinity membrane binding. As a continuation, we studied the activity of endotoxin-free recombinant IFI16 (rIFI16) protein on primary endothelial cells. rIFI16 caused dose/time-dependent upregulation of IL-6, IL-8, CCL2, CCL5, CCL20, ICAM1, VCAM1, and TLR4, while secretion of IL-6 and IL-8 was amplified with lipopolysaccharide synergy. Overall, cytokine secretion was completely inhibited in MyD88-silenced cells and partially by TLR4-neutralizing antibodies. By screening downstream signaling pathways, we found that IFI16 activates p38, p44/42 MAP kinases, and NF-kB. In particular, activation of p38 is an early event required for subsequent p44/42 MAP kinases activity and cytokine induction indicating a key role of this kinase in IFI16 signaling. Altogether, our data conclude that extracellular IFI16 protein alone or by synergy with lipopolysaccharide acts like Damage-associated molecular patterns propagating "Danger Signal" through MyD88-dependent TLR-pathway.File | Dimensione | Formato | |
---|---|---|---|
JICR-2014-0168.R1.docx
Accesso riservato
Descrizione: bozza finale post-referaggio
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
194.68 kB
Formato
Adobe PDF
|
194.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
BawadekarJICR2015.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
JICR-2014-0168.R1.pdf
Accesso aperto
Descrizione: bozza finale post-referaggio
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
898.13 kB
Formato
Adobe PDF
|
898.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.