In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 lm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 lm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals.
Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography
PICOLLO, FEDERICO;BATTIATO, ALFIO;BERNARDI, ETTORE;FORNERIS, Jacopo;GATTO MONTICONE, DANIELE;OLIVERO, Paolo
2015-01-01
Abstract
In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 lm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 lm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals.File | Dimensione | Formato | |
---|---|---|---|
NIMB_348_199.pdf
Accesso riservato
Descrizione: NIMB_348_199
Tipo di file:
PDF EDITORIALE
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
NIMB_348_199_AperTo.pdf
Open Access dal 03/01/2017
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.