Let $b_d$ be the Weyl symbol of the inverse to the harmonic oscillator on $R^d$. We prove that $b_d$ and its derivatives satisfy convenient bounds of Gevrey and Gelfand-Shilov type, and obtain explicit expressions for $b_d$. In the even-dimensional case we characterize $b_d$ in terms of elementary functions. In the analysis we use properties of radial symmetry and a combination of different techniques involving classical a priori estimates, commutator identities, power series and asymptotic expansions.
On the inverse to the harmonic oscillator
CAPPIELLO, Marco;RODINO, Luigi Giacomo;
2015-01-01
Abstract
Let $b_d$ be the Weyl symbol of the inverse to the harmonic oscillator on $R^d$. We prove that $b_d$ and its derivatives satisfy convenient bounds of Gevrey and Gelfand-Shilov type, and obtain explicit expressions for $b_d$. In the even-dimensional case we characterize $b_d$ in terms of elementary functions. In the analysis we use properties of radial symmetry and a combination of different techniques involving classical a priori estimates, commutator identities, power series and asymptotic expansions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
208.12 kB
Formato
Adobe PDF
|
208.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
HarmonicOsc21.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
374.26 kB
Formato
Adobe PDF
|
374.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.