We deal with the singularly perturbed Nagumo-type equation $$ \epsilon^2 u'' + u(1-u)(u-a(s)) = 0, $$ where $\epsilon > 0$ is a real parameter and $a: \mathbb{R} \to \mathbb{R}$ is a piecewise constant function satisfying $0 < a(s) < 1$ for all $s$. For small $\epsilon$, we prove the existence of chaotic, homoclinic and heteroclinic solutions. We use a dynamical systems approach, based on the Stretching Along Paths technique and on the Conley-Wa\.zewski's method.

Asymptotic and chaotic solutions of a singularly perturbed Nagumo-type equation

BOSCAGGIN, Alberto;DAMBROSIO, Walter;
2015-01-01

Abstract

We deal with the singularly perturbed Nagumo-type equation $$ \epsilon^2 u'' + u(1-u)(u-a(s)) = 0, $$ where $\epsilon > 0$ is a real parameter and $a: \mathbb{R} \to \mathbb{R}$ is a piecewise constant function satisfying $0 < a(s) < 1$ for all $s$. For small $\epsilon$, we prove the existence of chaotic, homoclinic and heteroclinic solutions. We use a dynamical systems approach, based on the Stretching Along Paths technique and on the Conley-Wa\.zewski's method.
2015
28
3465
3485
http://arxiv.org/abs/1503.05303
Nagumo-type equation; chaotic dynamics; homoclinic and heteroclinic solutions
Boscaggin, A.; Dambrosio, W.; Papini, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1520711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact