Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.

Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model

VALSECCHI, Valeria;BOIDO, Marina Maria;PIRAS, ANTONIO;VERCELLI, Alessandro
Last
2015-01-01

Abstract

Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.
2015
Inglese
Esperti anonimi
10
6
e0128560
e0128560
17
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
5
Valsecchi, Valeria; Boido, Marina; De Amicis, Elena; Piras, Antonio; Vercelli, Alessandro
info:eu-repo/semantics/article
partially_open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
pone.0128560.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri
Plos One 2015.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1530170
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact