The oxysterol 27-hydroxycholesterol (27-OH) is increasingly considered to be involved in a variety of pathophysiological processes, having been shown to modulate cell proliferation and metabolism, and also to exert proinflammatory and proapoptotic effects. This study aimed to elucidate the molecular pathways whereby 27-OH may generate survival signals in cells of the macrophage lineage, and to clarify whether its known prooxidant effect is involved in that process. A net up-regulation of survival signaling, involving the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt phosphorylation pathways, was observed in U937 promonocytic cells cultivated over time in the presence of a low micromolar concentration of the oxysterol. Interestingly, the up-regulation of both kinases was shown to be closely dependent on an early 27-OH-induced intracellular increase of reactive oxygen species (ROS). In turn, stimulation of ERK and PI3K/Akt both significantly quenched ROS steady state and markedly phosphorylated Bad, thereby determining a marked delay of the oxysterol׳s proapoptotic action. The 27-OH-induced survival pathways thus appear to be redox modulated and, if they occur within or nearby inflammatory cells during progression of chronic diseases such as cancer and atherosclerosis, they could significantly impact the growth and evolution of such diseases.
Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation.
GAMBA, Paola Francesca;TESTA, GABRIELLA;GARGIULO, Simona;BIASI, Fiorella;LEONARDUZZI, Gabriella Marisa;POLI, Giuseppe
2014-01-01
Abstract
The oxysterol 27-hydroxycholesterol (27-OH) is increasingly considered to be involved in a variety of pathophysiological processes, having been shown to modulate cell proliferation and metabolism, and also to exert proinflammatory and proapoptotic effects. This study aimed to elucidate the molecular pathways whereby 27-OH may generate survival signals in cells of the macrophage lineage, and to clarify whether its known prooxidant effect is involved in that process. A net up-regulation of survival signaling, involving the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt phosphorylation pathways, was observed in U937 promonocytic cells cultivated over time in the presence of a low micromolar concentration of the oxysterol. Interestingly, the up-regulation of both kinases was shown to be closely dependent on an early 27-OH-induced intracellular increase of reactive oxygen species (ROS). In turn, stimulation of ERK and PI3K/Akt both significantly quenched ROS steady state and markedly phosphorylated Bad, thereby determining a marked delay of the oxysterol׳s proapoptotic action. The 27-OH-induced survival pathways thus appear to be redox modulated and, if they occur within or nearby inflammatory cells during progression of chronic diseases such as cancer and atherosclerosis, they could significantly impact the growth and evolution of such diseases.File | Dimensione | Formato | |
---|---|---|---|
Vurusaner et al 2014.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
5.98 MB
Formato
Adobe PDF
|
5.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Vurusaner et al 2014.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
727.17 kB
Formato
Adobe PDF
|
727.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.