Information concerning the link between surfacewater photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 ·−. However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 ·−. Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 ·−). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen (1O2) and by the triplet states of chromophoric dissolved organic matter (3CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.
Effects of climate change on surface-water photochemistry: A Review
DE LAURENTIIS, ELISA;MINELLA, Marco;MAURINO, Valter;MINERO, Claudio;VIONE, Davide Vittorio
2014-01-01
Abstract
Information concerning the link between surfacewater photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 ·−. However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 ·−. Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 ·−). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen (1O2) and by the triplet states of chromophoric dissolved organic matter (3CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.File | Dimensione | Formato | |
---|---|---|---|
EnvironSciPollutRes_2014_21_20_11770-11780.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
976.04 kB
Formato
Adobe PDF
|
976.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ESPR_2014_climate.pdf
Open Access dal 02/01/2015
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
761.02 kB
Formato
Adobe PDF
|
761.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.