Nanoparticles research represents one of the most active fields in science due to the importance of nanosized materials in a wide variety of applications. Their characterization needs the comparison of data coming from different experimental techniques, but the peculiar properties of the nanosystem that each technique points out are not always properly taken into account and misleading results have been often reported. In this work, we generated transmission electron microscopy like (TEM-like) data to predict the extended X-ray absorption fine structure (EXAFS) and chemisorption-like typical outputs as the average coordination numbers up to fourth shell of the particles distribution and the surface area. The aim of the simulations is to explore the dependence of the calculated average coordination number (ACN) and average dispersion (AD) values from each parameter characterizing a particle size distribution (PSD), as the mean diameter, the width, the shape, and the profile, and shows that a range of distributions is compatible with given values of ACN and AD. In this way, we have established a general method to properly take into account the above-mentioned parameters and to allow for an accurate analysis and comparison of results. Furthermore, it will be shown that unfavorable distribution shape makes the comparison among techniques critical and potentially misleading if performed with an oversimplified model of the PSD such as those using the average diameter only.
Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study
AGOSTINI, Giovanni;GROPPO, Elena Clara;LAMBERTI, Carlo
2014-01-01
Abstract
Nanoparticles research represents one of the most active fields in science due to the importance of nanosized materials in a wide variety of applications. Their characterization needs the comparison of data coming from different experimental techniques, but the peculiar properties of the nanosystem that each technique points out are not always properly taken into account and misleading results have been often reported. In this work, we generated transmission electron microscopy like (TEM-like) data to predict the extended X-ray absorption fine structure (EXAFS) and chemisorption-like typical outputs as the average coordination numbers up to fourth shell of the particles distribution and the surface area. The aim of the simulations is to explore the dependence of the calculated average coordination number (ACN) and average dispersion (AD) values from each parameter characterizing a particle size distribution (PSD), as the mean diameter, the width, the shape, and the profile, and shows that a range of distributions is compatible with given values of ACN and AD. In this way, we have established a general method to properly take into account the above-mentioned parameters and to allow for an accurate analysis and comparison of results. Furthermore, it will be shown that unfavorable distribution shape makes the comparison among techniques critical and potentially misleading if performed with an oversimplified model of the PSD such as those using the average diameter only.File | Dimensione | Formato | |
---|---|---|---|
14_fcc_Matal_nano_Model.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
OpenAccess_nano_fcc_model.pdf
Open Access dal 16/01/2015
Descrizione: Open Access Post print version
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.