Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 μm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560–700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.

Electrical stimulation of non-classical photon emission from diamond color centers by means of sub-superficial graphitic electrodes

FORNERIS, Jacopo;TRAINA, PAOLO;OLIVERO, Paolo
2015

Abstract

Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 μm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560–700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.
5
15901
-
http://www.nature.com/articles/srep15901
Artificial diamond, Ion beam lithography, Quantum optics, Single photon emission
Forneris, Jacopo; Traina, Paolo; Monticone, Daniele Gatto; Amato, Giampiero; Boarino, Luca; Brida, Giorgio; Degiovanni, Ivo P.; Enrico, Emanuele; Moreva, Ekaterina; Grilj, Veljko; Skukan, Natko; Jakšić, Milko; Genovese, Marco; Olivero, Paolo
File in questo prodotto:
File Dimensione Formato  
SR_5_15901.pdf

Accesso aperto

Descrizione: SR_5_15901
Tipo di file: PDF EDITORIALE
Dimensione 691.63 kB
Formato Adobe PDF
691.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1532939
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 28
social impact