Human adipose-derived stem cells (hASCs) are a promising cell type for bone tissue engineering, given their potential to differentiate into osteoblast-like cells. Interactions among biochemical and mechanical signals result in bone formation and repair. In this process stem cells have a crucial role. Extracorporeal shockwaves (ESWs) are acoustic waves capable of enhancing bone regeneration, suggesting that ESWs may induce some signals for mesenchymal progenitor maturation. The aim of the present work is to investigate the effects of ESW treatment on the differentiation of hASCs into osteoblast-like cells and to better clarify the mechanisms involved. The hASCs were treated with ESWs and osteogenic medium, and the effects in terms of gene expression, alkaline phosphatase (ALP) activity and calcium deposition were then evaluated. Moreover, to investigate the mechanisms of ESW action, reactive oxygen species (ROS) production, extracellular-signal-regulated kinase (ERK) and small 'mothers against' decapentaplegic (Smad) phosphorylation, and bone morphogenetic protein 2 (BMP2) expression were assessed. The ESW treatment increased Runt-related transcription factor 2 (Runx2), ALP and BMP2 expression, as well as ALP activity and calcium deposits with respect to untreated cells. Moreover ESWs induced ROS formation, and both ERK and Smad phosphorylation. The present study shows the effects of ESWs on osteogenic differentiation in an in vitro model using hASCs and defines the mechanisms involved in this process. The observations suggest that the combination of autologous hASCs and ESW treatment may improve bone tissue repair in tissue engineering procedures.

Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells

CATALANO, Maria Graziella;MARANO, FRANCESCA;RINELLA, LETIZIA;BOSCO, Ornella;BERTA, Laura Adelaide Angela;FRAIRIA, Roberto
2014

Abstract

Human adipose-derived stem cells (hASCs) are a promising cell type for bone tissue engineering, given their potential to differentiate into osteoblast-like cells. Interactions among biochemical and mechanical signals result in bone formation and repair. In this process stem cells have a crucial role. Extracorporeal shockwaves (ESWs) are acoustic waves capable of enhancing bone regeneration, suggesting that ESWs may induce some signals for mesenchymal progenitor maturation. The aim of the present work is to investigate the effects of ESW treatment on the differentiation of hASCs into osteoblast-like cells and to better clarify the mechanisms involved. The hASCs were treated with ESWs and osteogenic medium, and the effects in terms of gene expression, alkaline phosphatase (ALP) activity and calcium deposition were then evaluated. Moreover, to investigate the mechanisms of ESW action, reactive oxygen species (ROS) production, extracellular-signal-regulated kinase (ERK) and small 'mothers against' decapentaplegic (Smad) phosphorylation, and bone morphogenetic protein 2 (BMP2) expression were assessed. The ESW treatment increased Runt-related transcription factor 2 (Runx2), ALP and BMP2 expression, as well as ALP activity and calcium deposits with respect to untreated cells. Moreover ESWs induced ROS formation, and both ERK and Smad phosphorylation. The present study shows the effects of ESWs on osteogenic differentiation in an in vitro model using hASCs and defines the mechanisms involved in this process. The observations suggest that the combination of autologous hASCs and ESW treatment may improve bone tissue repair in tissue engineering procedures.
1
10
Extracorporeal Shock Waves; ESW; Adipose derived stem cells; ASC; bone; osteogenic differentiation
MG. Catalano; F. Marano; L. Rinella; L. de Girolamo; O. Bosco; N. Fortunati; L. Berta; R. Frairia
File in questo prodotto:
File Dimensione Formato  
1332730_postprint.pdf

Accesso aperto con embargo fino al 31/05/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 753.82 kB
Formato Adobe PDF
753.82 kB Adobe PDF Visualizza/Apri
Catalano et al. TERM 2014.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/154355
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact