Bread staling is a complex phenomenon that originates from multiple physico-chemical events (amylopectin retrogradation, water loss and redistribution) that are not yet completely elucidated. Molecular properties of white bread loaves were characterized by multiple proton Nuclear Magnetic Resonance (NMR) techniques (proton FID, T2 and T1 relaxation time) over 14 days of storage. Changes at a molecular level (faster decay of proton FIDs and shifting of proton T2 relaxation times distributions towards shorter times), indicating a proton mobility reduction of the bread matrix, were observed during storage. Multiple 1H T2 populations were observed and tentatively associated to water-gluten and water-starch domains. Proton T1 of bread was for the first time measured at variable frequencies (Fast Field Cycling NMR) and found to be strongly dependent upon frequency and to decrease in bread during storage, especially at frequencies ≤ 0.2 MHz. An additional proton T1 population, relaxing at 2 ms, was detected at 0.52 MHz only at early storage times and tentatively attributed to a water-gluten domain that lost mobility during storage. © 2010 Elsevier Ltd.

Water molecular dynamics during bread staling by Nuclear Magnetic Resonance

BARONI, SIMONA;
2011-01-01

Abstract

Bread staling is a complex phenomenon that originates from multiple physico-chemical events (amylopectin retrogradation, water loss and redistribution) that are not yet completely elucidated. Molecular properties of white bread loaves were characterized by multiple proton Nuclear Magnetic Resonance (NMR) techniques (proton FID, T2 and T1 relaxation time) over 14 days of storage. Changes at a molecular level (faster decay of proton FIDs and shifting of proton T2 relaxation times distributions towards shorter times), indicating a proton mobility reduction of the bread matrix, were observed during storage. Multiple 1H T2 populations were observed and tentatively associated to water-gluten and water-starch domains. Proton T1 of bread was for the first time measured at variable frequencies (Fast Field Cycling NMR) and found to be strongly dependent upon frequency and to decrease in bread during storage, especially at frequencies ≤ 0.2 MHz. An additional proton T1 population, relaxing at 2 ms, was detected at 0.52 MHz only at early storage times and tentatively attributed to a water-gluten domain that lost mobility during storage. © 2010 Elsevier Ltd.
2011
44
4
854
859
1; H NMR; Bread staling; Fast Field Cycling NMR; Molecular mobility;
Elena Curti;Salvatore Bubici;Eleonora Carini;Simona Baroni;Elena Vittadini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/154384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 70
social impact