BACKGROUND: Antiretroviral therapy has considerably reduced HIV disease progression, but complete eradication of HIV cannot actually be achieved. Moreover, prolonged use of protease inhibitors (PIs) causes profound changes in lipid metabolism with an increased risk of cardiovascular diseases. P-glycoprotein (P-gp) is expressed on many cell types, playing an important role in the efflux of drugs including PIs, limiting their intracellular concentration. Furthermore, several studies showed that P-gp is involved in lipid homeostasis and its activity is regulated by cholesterol. METHODS: THP-1 monocytes were used to study: (i) the influence of low-density lipoprotein (LDL) on P-gp expression and function, assessed by flow cytometry and quantitative real-time PCR analysis and measuring ritonavir and rhodamine-123 dye efflux, respectively; and (ii) the influence of ritonavir on cholesterol mobilization. The intracellular levels of ritonavir or cholesterol were measured by HPLC-UV and filipin staining, respectively. RESULTS: In THP-1 cells, LDL was able to yield an increase in both P-gp expression and activity. THP-1 cells treated with LDL showed a decrease in the intracellular ritonavir concentration in a dose-dependent manner. Notably, ritonavir induced reduced cholesterol mobilization in THP-1 cells, probably due to its inhibitory action on P-gp activity. CONCLUSIONS: Our data indicate a potential interplay between LDL and ritonavir mediated by P-gp. This interaction could influence both therapy effectiveness and cellular lipid metabolism, with important implications in the management of HIV patients treated with boosted PIs.
Intracellular accumulation of atazanavir/ritonavir according to plasma concentrations and OATP1B1, ABCB1 and PXR genetic polymorphisms.
D'AVOLIO, ANTONIO
First
;CUSATO, JESSICA;SIMIELE, MARCO;CALCAGNO, Andrea;ALLEGRA, SARAH;SCIANDRA, Mauro;DI PERRI, Giovanni;BONORA, StefanoLast
2014-01-01
Abstract
BACKGROUND: Antiretroviral therapy has considerably reduced HIV disease progression, but complete eradication of HIV cannot actually be achieved. Moreover, prolonged use of protease inhibitors (PIs) causes profound changes in lipid metabolism with an increased risk of cardiovascular diseases. P-glycoprotein (P-gp) is expressed on many cell types, playing an important role in the efflux of drugs including PIs, limiting their intracellular concentration. Furthermore, several studies showed that P-gp is involved in lipid homeostasis and its activity is regulated by cholesterol. METHODS: THP-1 monocytes were used to study: (i) the influence of low-density lipoprotein (LDL) on P-gp expression and function, assessed by flow cytometry and quantitative real-time PCR analysis and measuring ritonavir and rhodamine-123 dye efflux, respectively; and (ii) the influence of ritonavir on cholesterol mobilization. The intracellular levels of ritonavir or cholesterol were measured by HPLC-UV and filipin staining, respectively. RESULTS: In THP-1 cells, LDL was able to yield an increase in both P-gp expression and activity. THP-1 cells treated with LDL showed a decrease in the intracellular ritonavir concentration in a dose-dependent manner. Notably, ritonavir induced reduced cholesterol mobilization in THP-1 cells, probably due to its inhibitory action on P-gp activity. CONCLUSIONS: Our data indicate a potential interplay between LDL and ritonavir mediated by P-gp. This interaction could influence both therapy effectiveness and cellular lipid metabolism, with important implications in the management of HIV patients treated with boosted PIs.File | Dimensione | Formato | |
---|---|---|---|
39 J. Antimicrob. Chemother.-2014-D'Avolio-3061-6.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
240.41 kB
Formato
Adobe PDF
|
240.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
154852_4aperto.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
455.04 kB
Formato
Adobe PDF
|
455.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.