The Ce4+↔ Ce3+ redox switch is at the basis of an all-inorganic catalytic cycle that is capable of mimicking the activity of several natural redox enzymes. The efficiency of these artificial enzymes (nanozymes) strongly depends on the Ce4+/Ce3+ ratio. By capitalizing on the results obtained on oxide/oxide model systems, we implemented a simple and effective procedure to obtain conformal TiO2@CeOx core−shell nanoparticles whose thickness is controlled with single-layer precision. Since the Ce3+ species are stabilized only at the interface by the electronic hybridization with the TiO2 states, the modulation of the shell thickness offers a simple method to tailor the Ce4+/Ce3+ ratio and therefore the catalytic properties. The activity of these nanoparticles as artificial peroxidase-like enzymes was tested, showing exceptional performances, even better than natural horseradish peroxidase enzyme. The main advantage with respect to other oxide/oxide nanozymes is that our nanoparticles, having a tunable Ce4+/Ce3+ ratio, are efficient already at low H2O2 concentrations.

TiO2@CeOx Core−Shell Nanoparticles as Artificial Enzymes with Peroxidase-Like Activity

PAGANINI, Maria Cristina;
2014-01-01

Abstract

The Ce4+↔ Ce3+ redox switch is at the basis of an all-inorganic catalytic cycle that is capable of mimicking the activity of several natural redox enzymes. The efficiency of these artificial enzymes (nanozymes) strongly depends on the Ce4+/Ce3+ ratio. By capitalizing on the results obtained on oxide/oxide model systems, we implemented a simple and effective procedure to obtain conformal TiO2@CeOx core−shell nanoparticles whose thickness is controlled with single-layer precision. Since the Ce3+ species are stabilized only at the interface by the electronic hybridization with the TiO2 states, the modulation of the shell thickness offers a simple method to tailor the Ce4+/Ce3+ ratio and therefore the catalytic properties. The activity of these nanoparticles as artificial peroxidase-like enzymes was tested, showing exceptional performances, even better than natural horseradish peroxidase enzyme. The main advantage with respect to other oxide/oxide nanozymes is that our nanoparticles, having a tunable Ce4+/Ce3+ ratio, are efficient already at low H2O2 concentrations.
2014
6
20130
20136
Luca Artiglia; Stefano Agnoli; Maria Cristina Paganini; Mattia Cattelan; and Gaetano Granozzi
File in questo prodotto:
File Dimensione Formato  
TiO2_CeOx_coreshell_OA_4aperto.pdf

Open Access dal 18/10/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri
Agnoli_2014.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/155565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 87
social impact