Mesenchymal stromal cells (MSCs) are a promising tool in cell therapies because of their multipotent, bystander, and immunomodulatory properties. Although bone marrow represents the main source of MSCs, there remains a need to identify a stem cell source that is safe and easily accessible and yields large numbers of cells without provoking debates over ethics. In this study, MSCs isolated from amniotic fluid and placenta were compared with bone marrow MSCs. Their immunomodulatory properties were studied in total activated T cells (peripheral blood mononuclear cells) stimulated with phytohemagglutinin (PHA-PBMCs). In particular, an in vitro co-culture system was established to study: (i) the effect on T-lymphocyte proliferation; (ii) the presence of T regulatory lymphocytes (Treg); (iii) the immunophenotype of various T subsets (Th1 and Th2 naïve, memory, effector lymphocytes); (iv) cytokine release and master gene expression to verify Th1, Th2, and Th17 polarization; and (v) IDO production. Under all co-culture conditions with PHA-PBMCs and MSCs (independently of tissue origin), data revealed: (i) T proliferation inhibition; (ii) increase in naïve T and decrease in memory T cells; (iii) increase in T regulatory lymphocytes; (iv) strong Th2 polarization associated with increased interleukin-10 and interleukin-4 levels, Th1 inhibition (significant decreases in interleukin-2, tumor necrosis factor-α, interferon-γ, and interleukin-12) and Th17 induction (production of high concentrations of interleukins-6 and -17); (v) indoleamine-2,3-dioxygenase mRNA induction in MSCs co-cultured with PHA-PBMCs. AF-MSCs had a more potent immunomodulatory effect on T cells than BM-MSCs, only slightly higher than that of placenta MSCs. This study indicates that MSCs isolated from fetal tissues may be considered a good alternative to BM-MSCs for clinical applications.

Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta

MARESCHI, Katia;CASTIGLIA, Sara;SANAVIO, Fiorella;MURARO, MICHELA;BERGALLO, Massimiliano;FAGIOLI, FRANCA
2016-01-01

Abstract

Mesenchymal stromal cells (MSCs) are a promising tool in cell therapies because of their multipotent, bystander, and immunomodulatory properties. Although bone marrow represents the main source of MSCs, there remains a need to identify a stem cell source that is safe and easily accessible and yields large numbers of cells without provoking debates over ethics. In this study, MSCs isolated from amniotic fluid and placenta were compared with bone marrow MSCs. Their immunomodulatory properties were studied in total activated T cells (peripheral blood mononuclear cells) stimulated with phytohemagglutinin (PHA-PBMCs). In particular, an in vitro co-culture system was established to study: (i) the effect on T-lymphocyte proliferation; (ii) the presence of T regulatory lymphocytes (Treg); (iii) the immunophenotype of various T subsets (Th1 and Th2 naïve, memory, effector lymphocytes); (iv) cytokine release and master gene expression to verify Th1, Th2, and Th17 polarization; and (v) IDO production. Under all co-culture conditions with PHA-PBMCs and MSCs (independently of tissue origin), data revealed: (i) T proliferation inhibition; (ii) increase in naïve T and decrease in memory T cells; (iii) increase in T regulatory lymphocytes; (iv) strong Th2 polarization associated with increased interleukin-10 and interleukin-4 levels, Th1 inhibition (significant decreases in interleukin-2, tumor necrosis factor-α, interferon-γ, and interleukin-12) and Th17 induction (production of high concentrations of interleukins-6 and -17); (v) indoleamine-2,3-dioxygenase mRNA induction in MSCs co-cultured with PHA-PBMCs. AF-MSCs had a more potent immunomodulatory effect on T cells than BM-MSCs, only slightly higher than that of placenta MSCs. This study indicates that MSCs isolated from fetal tissues may be considered a good alternative to BM-MSCs for clinical applications.
2016
44
2
138-150.e1
150.e1
Mareschi, Katia; Castiglia, Sara; Sanavio, Fiorella; Rustichelli, Deborah; Muraro, Michela; Defedele, Davide; Bergallo, Massimiliano; Fagioli, Franca...espandi
File in questo prodotto:
File Dimensione Formato  
Immunoregolatory.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.95 MB
Formato Adobe PDF
2.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1561157
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 62
social impact