Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. Evaluating the hazards associated with TiO2 NPs is crucial as it enables risk assessment related to human and environmental exposure. In this study the in vitro human toxicity of a set of TiO2 NPs modified with acetic, oleic and boric acids were studied in order to assess the hazard in view of a future scale-up of the synthesis. The surface reactivity of the powders under simulated solar illumination and in the dark has been evaluated by means of EPR spectroscopy. Human bronchial epithelial cells (BEAS-2B) have been chosen as a model for lung epithelium. Cytotoxicity has been assessed by measuring the cells membrane integrity by lactate dehydrogenase (LDH) assay, and the inflammatory response evaluated as nitric oxide (NO) and TNF-α production, and oxidative stress measured as intracellular reduced glutathione (GSH) levels, and induced lipoperoxidation. Aeroxide P25 was used for comparison.The results demonstrated a low photoreactivity and toxic effects lower than Aeroxide P25 of the nano-TiO2 powders, probably as a consequence of the presence of acidic moieties at the surface
Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites
ALDIERI, Elisabetta;FENOGLIO, Ivana;MARUCCO, ARIANNA MARIA;
2016-01-01
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. Evaluating the hazards associated with TiO2 NPs is crucial as it enables risk assessment related to human and environmental exposure. In this study the in vitro human toxicity of a set of TiO2 NPs modified with acetic, oleic and boric acids were studied in order to assess the hazard in view of a future scale-up of the synthesis. The surface reactivity of the powders under simulated solar illumination and in the dark has been evaluated by means of EPR spectroscopy. Human bronchial epithelial cells (BEAS-2B) have been chosen as a model for lung epithelium. Cytotoxicity has been assessed by measuring the cells membrane integrity by lactate dehydrogenase (LDH) assay, and the inflammatory response evaluated as nitric oxide (NO) and TNF-α production, and oxidative stress measured as intracellular reduced glutathione (GSH) levels, and induced lipoperoxidation. Aeroxide P25 was used for comparison.The results demonstrated a low photoreactivity and toxic effects lower than Aeroxide P25 of the nano-TiO2 powders, probably as a consequence of the presence of acidic moieties at the surfaceFile | Dimensione | Formato | |
---|---|---|---|
Vergaro et al. 2016 OA.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0887233316300704-main.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
749.91 kB
Formato
Adobe PDF
|
749.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.