By means of a symbolic method, a new family of time-space harmonic polynomials with respect to Lévy processes is given. The coefficients of these polynomials involve a formal expression of Lévy processes by which many identities are stated. We show that this family includes classical families of polynomials such as Hermite polynomials. Poisson–Charlier polynomials result to be a linear combinations of these new polynomials, when they have the property to be time-space harmonic with respect to the compensated Poisson process. The more general class of Lévy–Sheffer polynomials is recovered as a linear combination of these new polynomials, when they are time-space harmonic with respect to Lévy processes of very general form. We show the role played by cumulants of Lévy processes, so that connections with boolean and free cumulants are also stated.
A new family of time-space harmonic polynomials with respect to Lèvy processes
DI NARDO, Elvira;
2013-01-01
Abstract
By means of a symbolic method, a new family of time-space harmonic polynomials with respect to Lévy processes is given. The coefficients of these polynomials involve a formal expression of Lévy processes by which many identities are stated. We show that this family includes classical families of polynomials such as Hermite polynomials. Poisson–Charlier polynomials result to be a linear combinations of these new polynomials, when they have the property to be time-space harmonic with respect to the compensated Poisson process. The more general class of Lévy–Sheffer polynomials is recovered as a linear combination of these new polynomials, when they are time-space harmonic with respect to Lévy processes of very general form. We show the role played by cumulants of Lévy processes, so that connections with boolean and free cumulants are also stated.File | Dimensione | Formato | |
---|---|---|---|
ANNALI2013.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
213.02 kB
Formato
Adobe PDF
|
213.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.