Following the approach of Rota and Taylor, we present an innovative theory of Sheffer sequences in which the main properties are encoded by using umbrae. This syntax allows us noteworthy computational simplifications and conceptual clarifications in many results involving Sheffer sequences. To give an indication of the effectiveness of the theory, we describe applications to the well-known connection constants problem, to Lagrange inversion formula and to solving some recurrence relations.

The classical umbral calculus: Sheffer sequences.

DI NARDO, Elvira;
2009-01-01

Abstract

Following the approach of Rota and Taylor, we present an innovative theory of Sheffer sequences in which the main properties are encoded by using umbrae. This syntax allows us noteworthy computational simplifications and conceptual clarifications in many results involving Sheffer sequences. To give an indication of the effectiveness of the theory, we describe applications to the well-known connection constants problem, to Lagrange inversion formula and to solving some recurrence relations.
2009
8
101
130
umbral calculus; Sheffer sequences; connection constants problem; linear recurrences; Lagrange inversion formula
E. DI NARDO; H. NIEDERHAUSEN; D. SENATO
File in questo prodotto:
File Dimensione Formato  
NiriUnibas.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 327.1 kB
Formato Adobe PDF
327.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1561351
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact