A new algorithm for computing the multivariate Faà di Bruno’s formula is provided. We use a symbolic approach based on the classical umbral calculus that turns the computation of the multivariate Faà di Bruno’s formula into a suitable multinomial expansion. We propose a MAPLE procedure whose computational times are faster compared with the ones existing in the literature. Some illustrative applications are also provided.

A new algorithm for computing the multivariate Faa'  di Bruno's formula

DI NARDO, Elvira;
2011-01-01

Abstract

A new algorithm for computing the multivariate Faà di Bruno’s formula is provided. We use a symbolic approach based on the classical umbral calculus that turns the computation of the multivariate Faà di Bruno’s formula into a suitable multinomial expansion. We propose a MAPLE procedure whose computational times are faster compared with the ones existing in the literature. Some illustrative applications are also provided.
2011
217
13
6286
6295
http://www.sciencedirect.com/science/article/pii/S0096300311000051
https://arxiv.org/pdf/1012.6008v1
Multivariate composite function; Faà di Bruno’s formula; Multivariate cumulant; Multivariate Hermite polynomial; Classical umbral calculus
DI NARDO Elvira; G. GUARINO; SENATO PULLANO Domenico
File in questo prodotto:
File Dimensione Formato  
AMC2011.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 240.93 kB
Formato Adobe PDF
240.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1561357
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact