Prior research has accumulated a substantial amount of evidence on the ability of cocaine to produce short- and long-lasting molecular and structural plasticity in the corticostriatal-limbic circuitry. However, traditionally, the cerebellum has not been included in the addiction circuitry, even though growing evidence supports its involvement in the behavioural changes observed after repeated drug experiences. In the present study, we explored the ability of seven cocaine administrations to alter plasticity in the cerebellar vermis. After six cocaine injections, one injection every 48 h, mice remained undisturbed for 1 month in their home cages. Following this withdrawal period, they received a new cocaine injection of a lower dose. Locomotion, behavioural stereotypes and several molecular and structural cerebellar parameters were evaluated. Cerebellar proBDNF and mature BDNF levels were both enhanced by cocaine. The high BDNF expression was associated with dendritic sprouting and increased terminal size in Purkinje neurons. Additionally, we found a reduction in extracellular matrix components that might facilitate the subsequent remodelling of Purkinje-nuclear neuron synapses. Although speculative, it is possible that these cocaine-dependent cerebellar changes were incubated during withdrawal and manifested by the last drug injection. Importantly, the present findings indicate that cocaine is able to promote plasticity modifications in the cerebellum of sensitised animals similar to those in the basal ganglia.

Cocaine-induced plasticity in the cerebellum of sensitised mice

LETO, Ketty;CARULLI, Daniela;ROSSI, Ferdinando
2015

Abstract

Prior research has accumulated a substantial amount of evidence on the ability of cocaine to produce short- and long-lasting molecular and structural plasticity in the corticostriatal-limbic circuitry. However, traditionally, the cerebellum has not been included in the addiction circuitry, even though growing evidence supports its involvement in the behavioural changes observed after repeated drug experiences. In the present study, we explored the ability of seven cocaine administrations to alter plasticity in the cerebellar vermis. After six cocaine injections, one injection every 48 h, mice remained undisturbed for 1 month in their home cages. Following this withdrawal period, they received a new cocaine injection of a lower dose. Locomotion, behavioural stereotypes and several molecular and structural cerebellar parameters were evaluated. Cerebellar proBDNF and mature BDNF levels were both enhanced by cocaine. The high BDNF expression was associated with dendritic sprouting and increased terminal size in Purkinje neurons. Additionally, we found a reduction in extracellular matrix components that might facilitate the subsequent remodelling of Purkinje-nuclear neuron synapses. Although speculative, it is possible that these cocaine-dependent cerebellar changes were incubated during withdrawal and manifested by the last drug injection. Importantly, the present findings indicate that cocaine is able to promote plasticity modifications in the cerebellum of sensitised animals similar to those in the basal ganglia.
232
24
4455
4467
Vazquez-Sanroman D1, 2; Carbo-Gas, M; Leto, K; Cerezo-Garcia, M; Gil-Miravet, I; Sanchis-Segura, C; Carulli, D; Rossi, F
File in questo prodotto:
File Dimensione Formato  
Vazquez-Sanroman_et_al-2015-Psychopharmacology.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1574991
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact