The effect of L-glutamate (Glu) on human lymphocyte function was studied by measuring anti-CD(3) monoclonal antibody (mAb) or phytohaemagglutinin (PHA)-induced intracellular Ca(2+) ([Ca(2+)](i)) rise (Fura-2 method), and cell proliferation (MTT assay). Glu (0.001 - 100 microM) did not modify basal lymphocyte [Ca(2+)](i), but significantly potentiated the effects of anti-CD(3) mAb or PHA. Maximal [Ca(2+)](i) rises over resting cells were: 165+/-8 and 247+/-10 nM at 3.0x10(-2) mg ml(-1) anti-CD(3) mAb; 201+/-4 and 266+/-9 nM at 5.0x10(-2) mg ml(-1) PHA, in the absence or presence of 1 microM Glu, respectively. The Glu effect showed a bell-shape concentration-dependent relationship, with a maximum (+90+/-3% for anti-CD(3) mAb and +57+/-2% for PHA over Glu-untreated cells) at 1 microM. Non-NMDA receptor agonists (1 microM) showed a greater efficacy (+76+/-2% for (S)-AMPA; +78+/-4% for KA), if compared to NMDA (+46+/-2%), or Glu itself. Ionotropic Glu receptor antagonists completely inhibited the effects of the corresponding specific receptor agonists (1 microM). The IC(50) values calculated were: 0.9 microM for D-AP5; 0.6 microM for (+)-MK801; 0.3 microM for NBQX. Both NBQX and KYNA were able to abolish Glu effect. The IC(50s) calculated were: 3.4 microM for NBQX; 0.4 microM for KYNA. Glu (0.1 - 1 mM) did not change the resting cell proliferation, whereas Glu (1 mM) significant inhibited (-27+/-4%) PHA (1.0x10(-2) mg ml(-1))-induced lymphocyte proliferation at 72 h. In conclusion, human lymphocytes express ionotropic Glu receptors functionally operating as modulators of cell activation.

Characterization of ionotropic glutamate receptors in human lymphocytes

DIANZANI, Chiara;MIGLIO, Gianluca;FANTOZZI, Roberto
2001-01-01

Abstract

The effect of L-glutamate (Glu) on human lymphocyte function was studied by measuring anti-CD(3) monoclonal antibody (mAb) or phytohaemagglutinin (PHA)-induced intracellular Ca(2+) ([Ca(2+)](i)) rise (Fura-2 method), and cell proliferation (MTT assay). Glu (0.001 - 100 microM) did not modify basal lymphocyte [Ca(2+)](i), but significantly potentiated the effects of anti-CD(3) mAb or PHA. Maximal [Ca(2+)](i) rises over resting cells were: 165+/-8 and 247+/-10 nM at 3.0x10(-2) mg ml(-1) anti-CD(3) mAb; 201+/-4 and 266+/-9 nM at 5.0x10(-2) mg ml(-1) PHA, in the absence or presence of 1 microM Glu, respectively. The Glu effect showed a bell-shape concentration-dependent relationship, with a maximum (+90+/-3% for anti-CD(3) mAb and +57+/-2% for PHA over Glu-untreated cells) at 1 microM. Non-NMDA receptor agonists (1 microM) showed a greater efficacy (+76+/-2% for (S)-AMPA; +78+/-4% for KA), if compared to NMDA (+46+/-2%), or Glu itself. Ionotropic Glu receptor antagonists completely inhibited the effects of the corresponding specific receptor agonists (1 microM). The IC(50) values calculated were: 0.9 microM for D-AP5; 0.6 microM for (+)-MK801; 0.3 microM for NBQX. Both NBQX and KYNA were able to abolish Glu effect. The IC(50s) calculated were: 3.4 microM for NBQX; 0.4 microM for KYNA. Glu (0.1 - 1 mM) did not change the resting cell proliferation, whereas Glu (1 mM) significant inhibited (-27+/-4%) PHA (1.0x10(-2) mg ml(-1))-induced lymphocyte proliferation at 72 h. In conclusion, human lymphocytes express ionotropic Glu receptors functionally operating as modulators of cell activation.
2001
133
936
944
Glutamate; ionotropic glutamate receptors; human lymphocytes; immunomodulation; neuroinflammation
Lombardi G; Dianzani C; Miglio G; Canonico PL; Fantozzi R
File in questo prodotto:
File Dimensione Formato  
2001_Lombardi_BrJPharmacol.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 246 kB
Formato Adobe PDF
246 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1575
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact